142 research outputs found

    Heterogeneous accretion of Earth inferred from Mo-Ru isotope systematics

    Get PDF
    The Mo and Ru isotopic compositions of meteorites and the bulk silicate Earth (BSE) hold important clues about the provenance of Earth's building material. Prior studies have argued that non-carbonaceous (NC) and carbonaceous (CC) meteorite groups together define a Mo-Ru ‘cosmic’ correlation, and that the BSE plots on the extension of this correlation. These observations were taken as evidence that the final 10–15% of Earth's accreted material derived from a homogeneous inner disk reservoir with an enstatite chondrite-like isotopic composition. Here, using new Mo and Ru isotopic data for previously uninvestigated meteorite groups, we show that the Mo-Ru correlation only exists for NC meteorites, and that both the BSE and CC meteorites fall off this Mo-Ru correlation. These observations indicate that the final stages of Earth's accretion were heterogeneous and consisted of a mixture of NC and CC materials. The Mo-Ru isotope systematics are best accounted for by either an NC heritage of the late veneer combined with a CC heritage of the Moon-forming giant impactor, or by mixed NC-CC compositions for both components. The involvement of CC bodies in the late-stage accretionary assemblage of Earth is consistent with chemical models for core-mantle differentiation, which argue for the addition of more oxidized and volatile-rich material toward the end of Earth's formation. As such, this study resolves the inconsistencies between homogeneous accretion models based on prior interpretations of the Mo-Ru systematics of meteorites and the chemical evidence for heterogeneous accretion of Earth

    Heterogeneous accretion of Earth inferred from Mo-Ru isotope systematics

    Get PDF
    The Mo and Ru isotopic compositions of meteorites and the bulk silicate Earth (BSE) hold important clues about the provenance of Earth's building material. Prior studies have argued that non-carbonaceous (NC) and carbonaceous (CC) meteorite groups together define a Mo-Ru ‘cosmic’ correlation, and that the BSE plots on the extension of this correlation. These observations were taken as evidence that the final 10–15% of Earth's accreted material derived from a homogeneous inner disk reservoir with an enstatite chondrite-like isotopic composition. Here, using new Mo and Ru isotopic data for previously uninvestigated meteorite groups, we show that the Mo-Ru correlation only exists for NC meteorites, and that both the BSE and CC meteorites fall off this Mo-Ru correlation. These observations indicate that the final stages of Earth's accretion were heterogeneous and consisted of a mixture of NC and CC materials. The Mo-Ru isotope systematics are best accounted for by either an NC heritage of the late veneer combined with a CC heritage of the Moon-forming giant impactor, or by mixed NC-CC compositions for both components. The involvement of CC bodies in the late-stage accretionary assemblage of Earth is consistent with chemical models for core-mantle differentiation, which argue for the addition of more oxidized and volatile-rich material toward the end of Earth's formation. As such, this study resolves the inconsistencies between homogeneous accretion models based on prior interpretations of the Mo-Ru systematics of meteorites and the chemical evidence for heterogeneous accretion of Earth

    Age and genetic relationships among CB, CH and CR chondrites

    Full text link
    The carbonaceous Bencubbin-like (CB), high-metal (CH), and Renazzo-like (CR) chondrites are metal-rich chondrites that have been suggested to be genetically linked and are sometimes grouped together as the CR chondrite clan. Of these, the CB and CH chondrites are thought to have formed in an impact-generated vapor-melt plume from material that may be isotopically akin to CR chondrites. We report Mo, Ti, Cr, and Hf-W isotopic data for CB and CH chondrites in order to determine their formation time, to assess whether these chondrites are genetically related, and to evaluate their potential link to CR chondrites. An internal Hf-W isochron for the CH chondrite Acfer 182 yields an age of 3.8 +- 1.2 Ma after the formation of Ca-Al-rich inclusions (CAIs), which is indistinguishable from the mean Hf-W model age for CB metal of 3.8 +- 1.3 Ma. The Mo isotopic data for CB and CH chondrites indicate that both contain some of the same metal and silicate components, which themselves are isotopically distinct. As such, the different Mo isotopic compositions of bulk CB and CH chondrites reflect their distinct metal-to-silicate ratios. CR metal exhibits the same Mo isotopic composition as CB and CH metal, but CR silicates have distinct Mo and Ti isotopic compositions compared to CB and CH silicates, indicating that CB/CH chondrites may be genetically related to CR metal, but not to CR silicates. Together, the new isotopic data are consistent with formation of CB and CH chondrites in different regions of a common impact-generated vapor- melt plume and suggest that the CB and CH metal may derive from a metal-rich precursor genetically linked to CR chondrites. The Hf-W systematics of CH and CB chondrites indicate that the impact occurred at 3.8 +- 0.8 Ma after the formation of Ca-Al-rich inclusions and, hence, up to ~1 Ma earlier than previously inferred based on Pb- Pb chronology.Comment: 54 pages, 8 figures, 5 table

    The tungsten-182 record of kimberlites above the African superplume: Exploring links to the core-mantle boundary

    Get PDF
    Many volcanic hotspots are connected via ‘plume’ conduits to thermochemical structures with anomalously low seismic velocities at the core-mantle boundary. Basaltic lavas from some of these hotspots show anomalous daughter isotope abundances for the short-lived ¹²⁹I-¹²⁹Xe, ¹⁴⁶Sm-¹⁴²Nd, and ¹⁸²Hf-¹⁸²W radioactive decay systems, suggesting that their lower mantle sources contain material that dates back to Earth-forming events during the first 100 million years in solar system history. Survival of such ‘primordial’ remnants in Earth's mantle places important constraints on the evolution and inner workings of terrestrial planets. Here we report high-precision ¹⁸²W/¹⁸⁴W measurements for a large suite of kimberlite volcanic rocks from across the African tectonic plate, which for the past 250 million years has drifted over the most prominent thermochemical seismic anomaly at the core-mantle boundary. This so-called African LLSVP, or ‘large low shear-wave velocity province’, is widely suspected to store early Earth remnants and is implicated as the ultimate source of global Phanerozoic kimberlite magmatism. Our results show, however, that kimberlites from above the African LLSVP, including localities with lower mantle diamonds such as Letseng and Karowe Orapa A/K6, lack anomalous ¹⁸²W signatures, with an average μ¹⁸²W value of 0.0 ± 4.1 (2SD) for the 18 occurrences studied. If kimberlites are indeed sourced from the African LLSVP or superplume, then the extensive ¹⁸²W evidence suggests that primordial or core-equilibrated mantle materials, which may contribute resolvable μ¹⁸²W excesses or deficits, are only minor or locally concentrated components in the lowermost mantle, for example in the much smaller ‘ultra-low velocity zones’ or ULVZs. However, the lack of anomalous ¹⁸²W may simply suggest that low-volume kimberlite magmas are not derived from hot lower mantle plumes. In this alternative scenario, kimberlite magmas originate from volatile-fluxed ambient convecting upper mantle domains beneath relatively thick and cold lithosphere from where previously ‘stranded’ lower mantle and transition zone diamonds can be plucked

    The tungsten-182 record of kimberlites above the African superplume: Exploring links to the core-mantle boundary

    Get PDF
    Many volcanic hotspots are connected via ‘plume’ conduits to thermochemical structures with anomalously low seismic velocities at the core-mantle boundary. Basaltic lavas from some of these hotspots show anomalous daughter isotope abundances for the short-lived ¹²⁹I-¹²⁹Xe, ¹⁴⁶Sm-¹⁴²Nd, and ¹⁸²Hf-¹⁸²W radioactive decay systems, suggesting that their lower mantle sources contain material that dates back to Earth-forming events during the first 100 million years in solar system history. Survival of such ‘primordial’ remnants in Earth's mantle places important constraints on the evolution and inner workings of terrestrial planets. Here we report high-precision ¹⁸²W/¹⁸⁴W measurements for a large suite of kimberlite volcanic rocks from across the African tectonic plate, which for the past 250 million years has drifted over the most prominent thermochemical seismic anomaly at the core-mantle boundary. This so-called African LLSVP, or ‘large low shear-wave velocity province’, is widely suspected to store early Earth remnants and is implicated as the ultimate source of global Phanerozoic kimberlite magmatism. Our results show, however, that kimberlites from above the African LLSVP, including localities with lower mantle diamonds such as Letseng and Karowe Orapa A/K6, lack anomalous ¹⁸²W signatures, with an average μ¹⁸²W value of 0.0 ± 4.1 (2SD) for the 18 occurrences studied. If kimberlites are indeed sourced from the African LLSVP or superplume, then the extensive ¹⁸²W evidence suggests that primordial or core-equilibrated mantle materials, which may contribute resolvable μ¹⁸²W excesses or deficits, are only minor or locally concentrated components in the lowermost mantle, for example in the much smaller ‘ultra-low velocity zones’ or ULVZs. However, the lack of anomalous ¹⁸²W may simply suggest that low-volume kimberlite magmas are not derived from hot lower mantle plumes. In this alternative scenario, kimberlite magmas originate from volatile-fluxed ambient convecting upper mantle domains beneath relatively thick and cold lithosphere from where previously ‘stranded’ lower mantle and transition zone diamonds can be plucked

    Astronomical context of Solar System formation from molybdenum isotopes in meteorite inclusions

    Get PDF
    Calcium-aluminum–rich inclusions (CAIs) in meteorites are the first solids to have formed in the Solar System, defining the epoch of its birth on an absolute time scale. This provides a link between astronomical observations of star formation and cosmochemical studies of Solar System formation. We show that the distinct molybdenum isotopic compositions of CAIs cover almost the entire compositional range of material that formed in the protoplanetary disk. We propose that CAIs formed while the Sun was in transition from the protostellar to pre–main sequence (T Tauri) phase of star formation, placing Solar System formation within an astronomical context. Our results imply that the bulk of the material that formed the Sun and Solar System accreted within the CAI-forming epoch, which lasted less than 200,000 years

    Terrestrial planet formation from lost inner solar system material

    Get PDF
    Two fundamentally different processes of rocky planet formation exist, but it is unclear which one built the terrestrial planets of the solar system. They formed either by collisions among planetary embryos from the inner solar system or by accreting sunward-drifting millimeter-sized “pebbles” from the outer solar system. We show that the isotopic compositions of Earth and Mars are governed by two-component mixing among inner solar system materials, including material from the innermost disk unsampled by meteorites, whereas the contribution of outer solar system material is limited to a few percent by mass. This refutes a pebble accretion origin of the terrestrial planets but is consistent with collisional growth from inner solar system embryos. The low fraction of outer solar system material in Earth and Mars indicates the presence of a persistent dust-drift barrier in the disk, highlighting the specific pathway of rocky planet formation in the solar system

    Dosing of Convalescent Plasma and Hyperimmune Anti-SARS-CoV-2 Immunoglobulins:A Phase I/II Dose-Finding Study

    Get PDF
    Background and Objective: During the COVID-19 pandemic, trials on convalescent plasma (ConvP) were performed without preceding dose-finding studies. This study aimed to assess potential protective dosing regimens by constructing a population pharmacokinetic (popPK) model describing anti-SARS-CoV-2 antibody titers following the administration of ConvP or hyperimmune globulins (COVIg). Methods: Immunocompromised patients, testing negative for anti-SARS-CoV-2 spike antibodies despite vaccination, received a range of anti-SARS-CoV-2 antibodies in the form of COVIg or ConvP infusion. The popPK analysis was performed using NONMEM v7.4. Monte Carlo simulations were performed to assess potential COVIg and ConvP dosing regimens for prevention of COVID-19. Results: Forty-four patients were enrolled, and data from 42 were used for constructing the popPK model. A two-compartment elimination model with mixed residual error best described the Nab-titers after administration. Inter-individual variation was associated to CL (44.3%), V1 (27.3%), and V2 (29.2%). Lean body weight and type of treatment (ConvP/COVIg) were associated with V1 and V2, respectively. Median elimination half-life was 20 days (interquartile range: 17–25 days). Simulations demonstrated that even monthly infusions of 600 mL of the ConvP or COVIg used in this trial would not achieve potentially protective serum antibody titers for &gt; 90% of the time. However, as a result of hybrid immunity and/or repeated vaccination, plasma donors with extremely high antibody titers are now readily available, and a &gt; 90% target attainment should be possible. Conclusion: The results of this study may inform future intervention studies on the prophylactic and therapeutic use of antiviral antibodies in the form of ConvP or COVIg. Clinical trial registration number: NL9379 (The Netherlands Trial Register).</p
    corecore