14 research outputs found
Recommended from our members
Urban Heat Island Mitigation Can Improve New York City's Environment: Research on the Impacts of Mitigation Strategies on the Urban Environment
Recommended from our members
Long-Term Threats to Canada's James Bay from Hydro-Electrical Development
Intra-urban vulnerability to heat-related mortality in New York City, 1997–2006
AbstractThe health impacts of exposure to summertime heat are a significant problem in New York City (NYC) and for many cities and are expected to increase with a warming climate. Most studies on heat-related mortality have examined risk factors at the municipal or regional scale and may have missed the intra-urban variation of vulnerability that might inform prevention strategies. We evaluated whether place-based characteristics (socioeconomic/demographic and health factors, as well as the built and biophysical environment) may be associated with greater risk of heat-related mortality for seniors during heat events in NYC. As a measure of relative vulnerability to heat, we used the natural cause mortality rate ratio among those aged 65 and over (MRR65+), comparing extremely hot days (maximum heat index 100°F+) to all warm season days, across 1997–2006 for NYC’s 59 Community Districts and 42 United Hospital Fund neighborhoods. Significant positive associations were found between the MRR65+ and neighborhood-level characteristics: poverty, poor housing conditions, lower rates of access to air-conditioning, impervious land cover, surface temperatures aggregated to the area-level, and seniors’ hypertension. Percent Black/African American and household poverty were strong negative predictors of seniors’ air conditioning access in multivariate regression analysis
Recommended from our members
Simulating Changes in Regional Air Pollution over the Eastern United States Due to Changes in Global and Regional Climate and Emissions
[1] To simulate ozone (O3) air quality in future decades over the eastern United States, a modeling system consisting of the NASA Goddard Institute for Space Studies Atmosphere-Ocean Global Climate Model, the Pennsylvania State University/National Center for Atmospheric Research mesoscale regional climate model (MM5), and the Community Multiscale Air Quality model has been applied. Estimates of future emissions of greenhouse gases and ozone precursors are based on the A2 scenario developed by the Intergovernmental Panel on Climate Change (IPCC), one of the scenarios with the highest growth of CO2 among all IPCC scenarios. Simulation results for five summers in the 2020s, 2050s, and 2080s indicate that summertime average daily maximum 8-hour O3 concentrations increase by 2.7, 4.2, and 5.0 ppb, respectively, as a result of regional climate change alone with respect to five summers in the 1990s. Through additional sensitivity simulations for the five summers in the 2050s the relative impact of changes in regional climate, anthropogenic emissions within the modeling domain, and changed boundary conditions approximating possible changes of global atmospheric composition was investigated. Changed boundary conditions are found to be the largest contributor to changes in predicted summertime average daily maximum 8-hour O3 concentrations (5.0 ppb), followed by the effects of regional climate change (4.2 ppb) and the effects of increased anthropogenic emissions (1.3 ppb). However, when changes in the fourth highest summertime 8-hour O3 concentration are considered, changes in regional climate are the most important contributor to simulated concentration changes (7.6 ppb), followed by the effect of increased anthropogenic emissions (3.9 ppb) and increased boundary conditions (2.8 ppb). Thus, while previous studies have pointed out the potentially important contribution of growing global emissions and intercontinental transport to O3 air quality in the United States for future decades, the results presented here imply that it may be equally important to consider the effects of a changing climate when planning for the future attainment of regional-scale air quality standards such as the U.S. national ambient air quality standard that is based on the fourth highest annual daily maximum 8-hour O3 concentration
Recommended from our members
Climate Information for Improved Planning and Management of Mega Cities (Needs Perspective)
The majority of the population of the planet (6.6 billion) now live in urban areas, which have distinct impacts upon climate at scales from the local to the global. This urban effect is due to the physical form of the city (its three-dimensional geometry and material composition) and its functions (the day-to-day activity patterns that generate emissions of waste heat and materials into the overlying air). While a substantial body of knowledge on the science of urban climates has been developed over the past fifty years, there is little evidence that this knowledge is incorporated into urban planning and design practice. This paper focuses on this gap by examining the nature of urban climate expertise and the needs of those that make decisions about urban areas. In conclusion it makes recommendations to maintain and enhance urban observations and data; to improve understanding of local, regional and global climate linkages; to develop tools for practical planning; and to disseminate urban climate knowledge and its relevance to urban planning to both practicing meteorologists and urban decision makers
Recommended from our members
Sensitivity of Present and Future Surface Temperatures to Precipitation Characteristics
A model simulation study shows that different diurnal cycles of precipitation are consistent with radically different present and future climate characteristics. In projected future climate scenarios, divergence in the time of day and type of precipitation had very divergent impacts on the radiation balance and consequently on surface temperatures. The relationship between the diurnal cycle of precipitation versus the present and future climate was examined using the GISS-MM5 (Goddard Institute for Space Studies Mesoscale Model 5) regional climate modeling system with 2 alternative moist convection schemes. June-August (JJA) mean surface temperatures of the 1990s, 2050s, and 2080s were simulated over the eastern US on a double nested 108/36 km domain, with the 36 km domain centered over the eastern US. In the 1990s, one model version simulated maxima in (convective) precipitation during the early morning, while the second model simulated the hour of precipitation maxima with considerable spatial variability (in better agreement with observations). In the futuristic climate scenarios, differences in the time of day of precipitation had very important impacts on the radiation balance at the surface. One version gave more precipitation at night and fewer clouds during the day, promoting higher surface temperatures. The alternative version created more precipitation during the day, consistent with diminished absorption of solar radiation at the surface and consequently lower surface temperatures. The results demonstrate the importance of improving cumulus parameterizations in regional mesoscale and global climate models and suggest that such improvements would lead to greater confidence in model projections of climate change
Recommended from our members
Assessing Potential Public Health and Air Quality Impacts of Changing Climate and Land Use in Metropolitan New York: A Study by the New York Climate & Health Project
Recommended from our members
Simulated Effects of Climate Change on Summertime Nitrogen Deposition in the Eastern US
It is anticipated that climate change may impact regional-scale air quality and atmospheric deposition in the coming decades. To simulate the effects of climate change on nitrogen (N) deposition across numerous watersheds in the eastern US, we applied the NASA Goddard Institute for Space Studies General Circulation Model (GISS-GCM), Fifth Generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5), Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system, and the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model. Keeping chemical initial and boundary conditions, land use, and anthropogenic area and point source emissions fixed, this modeling system was applied over five summers (June–August) from 1993 to 1997 and five summers from 2053 to 2057. Over these eastern US watersheds, the modeling system estimated 3–14% increases in summertime N deposition as a result of climate change. This increase is primarily due to the direct effects of climate change on atmospheric conditions and chemistry. Wet N deposition is predicted to increase as a result of increased precipitation, while dry N deposition is predicted to increase as higher surface temperatures favor gas-phase nitric acid to particulate nitrate. The simulated increase suggests that additional reductions in N oxides and/or ammonia may be needed to fully realize the anticipated benefits of planned reduction strategies, including the Clean Air Interstate Rule (CAIR)
Recommended from our members
Simulating Regional-Scale Ozone Climatology over the Eastern United States: Model Evaluation Results
To study the potential impacts of climate change on air quality and public health over the eastern United States, a coupled global/regional-scale modeling system consisting of the NASA-Goddard Institute for Space Studies Atmosphere–Ocean model, the MM5 mesoscale meteorological model and the Community Multiscale Air Quality (CMAQ) model for air quality has been developed. Evaluation results of the modeling system used to simulate climate and ozone air quality over the eastern United States during the five summers of 1993–1997 are presented in this paper. The results indicate that MM5 and CMAQ capture interannual and synoptic-scale variability present in surface temperature and ozone observations in the current climate, while the magnitude of fluctuations on shorter time scales is underestimated. A comparison of observed and predicted spatial patterns of daily maximum ozone concentrations shows best performance in predicting patterns for average and above-average ozone concentrations. The frequency distributions of the duration of extreme heat and ozone events show similar features for both model predictions and observations. Finally, application of a synoptic map-typing procedure reveals that the MM5/CMAQ system succeeded in simulating the average ozone concentrations associated with several frequent pressure patterns, indicating that the effects of synoptic-scale meteorology on ozone concentrations are captured by the modeling system. It is concluded that the GCM/MM5/CMAQ system is a suitable tool for the simulation of summertime surface temperature and ozone air quality conditions over the eastern United States in the present climate