3,283 research outputs found

    Composite Fermion Description of Correlated Electrons in Quantum Dots: Low Zeeman Energy Limit

    Full text link
    We study the applicability of composite fermion theory to electrons in two-dimensional parabolically-confined quantum dots in a strong perpendicular magnetic field in the limit of low Zeeman energy. The non-interacting composite fermion spectrum correctly specifies the primary features of this system. Additional features are relatively small, indicating that the residual interaction between the composite fermions is weak. \footnote{Published in Phys. Rev. B {\bf 52}, 2798 (1995).}Comment: 15 pages, 7 postscript figure

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore