6,881 research outputs found
A Technique for Tunneling Central Venous Catheters
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141663/1/jpen0521.pd
Forces between functionalized silica nanoparticles in solution
To prevent the flocculation and phase separation of nanoparticles in
solution, nanoparticles are often functionalized with short chain surfactants.
Here we present fully-atomistic molecular dynamics simulations which
characterize how these functional coatings affect the interactions between
nanoparticles and with the surrounding solvent. For 5 nm diameter silica
nanoparticles coated with poly(ethylene oxide) (PEO) oligomers in water, we
determined the hydrodynamic drag on two approaching nanoparticles moving
through solvent and on a single nanoparticle as it approaches a planar surface.
In most circumstances, acroscale fluid theory accurately predicts the drag on
these nano-scale particles. Good agreement is seen with Brenner's analytical
solutions for wall separations larger than the soft nanoparticle radius. For
two approaching coated nanoparticles, the solvent-mediated
(velocity-independent) and lubrication (velocity-dependent) forces are purely
repulsive and do not exhibit force oscillations that are typical of uncoated
rigid spheres.Comment: 4 pages, 3 fig
On the Joint Distribution of Energy Levels of Random Schroedinger Operators
We consider operators with random potentials on graphs, such as the lattice
version of the random Schroedinger operator. The main result is a general bound
on the probabilities of simultaneous occurrence of eigenvalues in specified
distinct intervals, with the corresponding eigenfunctions being separately
localized within prescribed regions. The bound generalizes the Wegner estimate
on the density of states. The analysis proceeds through a new multiparameter
spectral averaging principle
A zone of preferential ion heating extends tens of solar radii from Sun
The extreme temperatures and non-thermal nature of the solar corona and solar
wind arise from an unidentified physical mechanism that preferentially heats
certain ion species relative to others. Spectroscopic indicators of unequal
temperatures commence within a fraction of a solar radius above the surface of
the Sun, but the outer reach of this mechanism has yet to be determined. Here
we present an empirical procedure for combining interplanetary solar wind
measurements and a modeled energy equation including Coulomb relaxation to
solve for the typical outer boundary of this zone of preferential heating.
Applied to two decades of observations by the Wind spacecraft, our results are
consistent with preferential heating being active in a zone extending from the
transition region in the lower corona to an outer boundary 20-40 solar radii
from the Sun, producing a steady state super-mass-proportional
-to-proton temperature ratio of . Preferential ion heating
continues far beyond the transition region and is important for the evolution
of both the outer corona and the solar wind. The outer boundary of this zone is
well below the orbits of spacecraft at 1 AU and even closer missions such as
Helios and MESSENGER, meaning it is likely that no existing mission has
directly observed intense preferential heating, just residual signatures. We
predict that {Parker Solar Probe} will be the first spacecraft with a perihelia
sufficiently close to the Sun to pass through the outer boundary, enter the
zone of preferential heating, and directly observe the physical mechanism in
action.Comment: 11 pages, 7 figures, accepted for publication in the Astrophysical
Journal on 1 August 201
Angular dependence of domain wall resistivity in SrRuO films
is a 4d itinerant ferromagnet (T 150 K) with
stripe domain structure. Using high-quality thin films of SrRuO we study
the resistivity induced by its very narrow ( nm) Bloch domain walls,
(DWR), at temperatures between 2 K and T as a function of the
angle, , between the electric current and the ferromagnetic domains
walls. We find that which provides the first experimental
indication that the angular dependence of spin accumulation contribution to DWR
is . We expect magnetic multilayers to exhibit a similar
behavior.Comment: 5 pages, 5 figure
IS ABDOMINAL AUSCULTATION IMPORTANT?
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23772/1/0000008.pd
AXILLARY OR RECTAL TEMPERATURES IN CHILDREN?
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24315/1/0000581.pd
The mPower Study, Parkinson Disease Mobile Data Collected Using Researchkit
Current measures of health and disease are often insensitive, episodic, and subjective. Further, these measures generally are not designed to provide meaningful feedback to individuals. The impact of high-resolution activity data collected from mobile phones is only beginning to be explored. Here we present data from mPower, a clinical observational study about Parkinson disease conducted purely through an iPhone app interface. The study interrogated aspects of this movement disorder through surveys and frequent sensor-based recordings from participants with and without Parkinson disease. Benefitting from large enrollment and repeated measurements on many individuals, these data may help establish baseline variability of real-world activity measurement collected via mobile phones, and ultimately may lead to quantification of the ebbs-and-flows of Parkinson symptoms. App source code for these data collection modules are available through an open source license for use in studies of other conditions. We hope that releasing data contributed by engaged research participants will seed a new community of analysts working collaboratively on understanding mobile health data to advance human health
- …