1,085 research outputs found
Theory of Neutron Diffraction from the Vortex Lattice in UPt3
Neutron scattering experiments have recently been performed in the
superconducting state of UPt3 to determine the structure of the vortex lattice.
The data show anomalous field dependence of the aspect ratio of the unit cell
in the B phase. There is apparently also a change in the effective coherence
length on the transition from the B to the C phases. Such observations are not
consistent with conventional superconductvity. A theory of these results is
constructed based on a picture of two-component superconductivity for UPt3. In
this way, these unusual observations can be understood. There is a possible
discrepancy between theory and experiment in the detailed field dependence of
the aspect ratio.Comment: 11 pages; uses REVTEX, APS and PRABIB styles; 2 Postscript figure
files include
Nonlinear Micromechanical Casimir Oscillator
The Casimir force between uncharged metallic surfaces originates from quantum
mechanical zero point fluctuations of the electromagnetic field. We demonstrate
that this quantum electrodynamical effect has a profound influence on the
oscillatory behavior of microstructures when surfaces are in close proximity
(<= 100 nm). Frequency shifts, hysteretic behavior and bistability caused by
the Casimir force are observed in the frequency response of a periodically
driven micromachined torsional oscillator.Comment: 4 pages, 4 figures; added and rearranged references; added comments
on sensitivit
Perturbation of Tunneling Processes by Mechanical Degrees of Freedom in Mesoscopic Junctions
We investigate the perturbation in the tunneling current caused by
non-adiabatic mechanical motion in a mesoscopic tunnel junction. A theory
introduced by Caroli et al. \cite{bi1,bi2,bi3} is used to evaluate second order
self-energy corrections for this non-equilibrium situation lacking
translational invariance. Inelastic signatures of the mechanical degrees of
freedom are found in the current-voltage characteristics. These give
rise to sharp features in the derivative spectrum, .Comment: 22 pages LaTeX + 3 uuencoded PS picture
Replay: multi-modal multi-view acted videos for casual holography
We introduce Replay, a collection of multi-view, multimodal videos of humans interacting socially. Each scene
is filmed in high production quality, from different viewpoints with several static cameras, as well as wearable
action cameras, and recorded with a large array of microphones at different positions in the room. Overall, the dataset contains over 4000 minutes of footage and over 7 million timestamped high-resolution frames annotated with camera poses and partially with foreground masks. The Replay dataset has many potential applications, such as novelview synthesis, 3D reconstruction, novel-view acoustic synthesis, human body and face analysis, and training generative models. We provide a benchmark for training and evaluating novel-view synthesis, with two scenarios of different difficulty. Finally, we evaluate several baseline state-of-theart methods on the new benchmark
The Canonical Model of a Singular Curve
We give refined statements and modern proofs of Rosenlicht's results about
the canonical model C' of an arbitrary complete integral curve C. Notably, we
prove that C and C' are birationally equivalent if and only if C is
nonhyperelliptic, and that, if C is nonhyperelliptic, then C' is equal to the
blowup of C with respect to the canonical sheaf \omega. We also prove some new
results: we determine just when C' is rational normal, arithmetically normal,
projectively normal, and linearly normal.Comment: 28 pages, no figures, IV Congresso Iberoamericano de Geometria
Complex
Democratic cultural policy : democratic forms and policy consequences
The forms that are adopted to give practical meaning to democracy are assessed to identify what their implications are for the production of public policies in general and cultural policies in particular. A comparison of direct, representative, democratic elitist and deliberative versions of democracy identifies clear differences between them in terms of policy form and democratic practice. Further elaboration of these differences and their consequences are identified as areas for further research
Dephasing of Electrons by Two-Level Defects in Quantum Dots
The electron dephasing time in a diffusive quantum dot is
calculated by considering the interaction between the electron and dynamical
defects, modelled as two-level system. Using the standard tunneling model of
glasses, we obtain a linear temperature dependence of ,
consistent with the experimental observation. However, we find that, in order
to obtain dephasing times on the order of nanoseconds, the number of two-level
defects needs to be substantially larger than the typical concentration in
glasses. We also find a finite system-size dependence of , which
can be used to probe the effectiveness of surface-aggregated defects.Comment: two-column 9 page
New Experimental Limits on Macroscopic Forces Below 100 Microns
Results of an experimental search for new macroscopic forces with Yukawa
range between 5 and 500 microns are presented. The experiment uses 1 kHz
mechanical oscillators as test masses with a stiff conducting shield between
them to suppress backgrounds. No signal is observed above the instrumental
thermal noise after 22 hours of integration time. These results provide the
strongest limits to date between 10 and 100 microns, improve on previous limits
by as much as three orders of magnitude, and rule out half of the remaining
parameter space for predictions of string-inspired models with low-energy
supersymmetry breaking. New forces of four times gravitational strength or
greater are excluded at the 95% confidence level for interaction ranges between
200 and 500 microns.Comment: 25 Pages, 7 Figures: Minor Correction
- …