53 research outputs found

    5G Positioning and Mapping with Diffuse Multipath

    Get PDF
    5G mmWave communication is useful for positioning due to the geometric connection between the propagation channel and the propagation environment. Channel estimation methods can exploit the resulting sparsity to estimate parameters(delay and angles) of each propagation path, which in turn can be exploited for positioning and mapping. When paths exhibit significant spread in either angle or delay, these methods breakdown or lead to significant biases. We present a novel tensor-based method for channel estimation that allows estimation of mmWave channel parameters in a non-parametric form. The method is able to accurately estimate the channel, even in the absence of a specular component. This in turn enables positioning and mapping using only diffuse multipath. Simulation results are provided to demonstrate the efficacy of the proposed approach

    Amplitude Modeling of Specular Multipath Components for Robust Indoor Localization

    Get PDF
    Ultra-Wide Bandwidth (UWB) and mm-wave radio systems can resolve specular multipath components (SMCs) from estimated channel impulse response measurements. A geometric model can describe the delays, angles-of-arrival, and angles-of-departure of these SMCs, allowing for a prediction of these channel features. For the modeling of the amplitudes of the SMCs, a data-driven approach has been proposed recently, using Gaussian Process Regression (GPR) to map and predict the SMC amplitudes. In this paper, the applicability of the proposed multipath-resolved, GPR-based channel model is analyzed by studying features of the propagation channel from a set of channel measurements. The features analyzed include the energy capture of the modeled SMCs, the number of resolvable SMCs, and the ranging information that could be extracted from the SMCs. The second contribution of the paper concerns the potential applicability of the channel model for a multipath-resolved, single-anchor positioning system. The predicted channel knowledge is used to evaluate the measurement likelihood function at candidate positions throughout the environment. It is shown that the environmental awareness created by the multipath-resolved, GPR-based channel model yields higher robustness against position estimation outliers

    Message Passing-Based 9-D Cooperative Localization and Navigation with Embedded Particle Flow

    Full text link
    Cooperative localization (CL) is an important technology for innovative services such as location-aware communication networks, modern convenience, and public safety. We consider wireless networks with mobile agents that aim to localize themselves by performing pairwise measurements amongst agents and exchanging their location information. Belief propagation (BP) is a state-of-the-art Bayesian method for CL. In CL, particle-based implementations of BP often are employed that can cope with non-linear measurement models and state dynamics. However, particle-based BP algorithms are known to suffer from particle degeneracy in large and dense networks of mobile agents with high-dimensional states. This paper derives the messages of BP for CL by means of particle flow, leading to the development of a distributed particle-based message-passing algorithm which avoids particle degeneracy. Our combined particle flow-based BP approach allows the calculation of highly accurate proposal distributions for agent states with a minimal number of particles. It outperforms conventional particle-based BP algorithms in terms of accuracy and runtime. Furthermore, we compare the proposed method to a centralized particle flow-based implementation, known as the exact Daum-Huang filter, and to sigma point BP in terms of position accuracy, runtime, and memory requirement versus the network size. We further contrast all methods to the theoretical performance limit provided by the posterior Cram\'er-Rao lower bound (PCRLB). Based on three different scenarios, we demonstrate the superiority of the proposed method.Comment: 14 pages (two column), 7 figure

    A Graph-based Algorithm for Robust Sequential Localization Exploiting Multipath for Obstructed-LOS-Bias Mitigation

    Full text link
    This paper presents a factor graph formulation and particle-based sum-product algorithm (SPA) for robust sequential localization in multipath-prone environments. The proposed algorithm jointly performs data association, sequential estimation of a mobile agent position, and adapts all relevant model parameters. We derive a novel non-uniform false alarm (FA) model that captures the delay and amplitude statistics of the multipath radio channel. This model enables the algorithm to indirectly exploit position-related information contained in the MPCs for the estimation of the agent position. Using simulated and real measurements, we demonstrate that the algorithm can provide high-accuracy position estimates even in fully obstructed line-of-sight (OLOS) situations, significantly outperforming the conventional amplitude-information probabilistic data association (AIPDA) filter. We show that the performance of our algorithm constantly attains the posterior Cramer-Rao lower bound (PCRLB), or even succeeds it, due to the additional information contained in the presented FA model.Comment: corrected small errors, changed titl

    A Neural-enhanced Factor Graph-based Algorithm for Robust Positioning in Obstructed LOS Situations

    Full text link
    This paper presents a neural-enhanced probabilistic model and corresponding factor graph-based sum-product algorithm for robust localization and tracking in multipath-prone environments. The introduced hybrid probabilistic model consists of physics-based and data-driven measurement models capturing the information contained in both, the line-of-sight (LOS) component as well as in multipath components (NLOS components). The physics-based and data-driven models are embedded in a joint Bayesian framework allowing to derive from first principles a factor graph-based algorithm that fuses the information of these models. The proposed algorithm uses radio signal measurements from multiple base stations to robustly estimate the mobile agent's position together with all model parameters. It provides high localization accuracy by exploiting the position-related information of the LOS component via the physics-based model and robustness by exploiting the geometric imprint of multipath components independent of the propagation channel via the data-driven model. In a challenging numerical experiment involving obstructed LOS situations to all anchors, we show that the proposed sequential algorithm significantly outperforms state-of-the-art methods and attains the posterior Cramer-Rao lower bound even with training data limited to local regions.Comment: corrrected left-shift in Fig.

    Fast Variational Block-Sparse Bayesian Learning

    Full text link
    We present a fast update rule for variational block-sparse Bayesian learning (SBL) methods. Using a variational Bayesian framework, we show how repeated updates of probability density functions (PDFs) of the prior variances and weights can be expressed as a nonlinear first-order recurrence from one estimate of the parameters of the proxy PDFs to the next. Specifically, the recurrent relation turns out to be a strictly increasing rational function for many commonly used prior PDFs of the variances, such as Jeffrey's prior. Hence, the fixed points of this recurrent relation can be obtained by solving for the roots of a polynomial. This scheme allows to check for convergence/divergence of individual prior variances in a single step. Thereby, the the computational complexity of the variational block-SBL algorithm is reduced and the convergence speed is improved by two orders of magnitude in our simulations. Furthermore, the solution allows insights into the sparsity of the estimators obtained by choosing different priors.Comment: 10 pages, 2 figures, submitted to IEEE Transactions on Signal Processing on 1st of June, 202
    • …
    corecore