45 research outputs found

    Addressing the challenges of uncertainty in regression models for high dimensional and heterogeneous data from observational studies

    Get PDF
    The lack of replicability in research findings from different scientific disciplines has gained wide attention in the last few years and led to extensive discussions. In this `replication crisis', different types of uncertainty play an important role, which occur at different points of data collection and statistical analysis. Nevertheless, the consequences are often ignored in current research practices with the risk of low credibility and reliability of research findings. For the analysis and the development of solutions to this problem, we define measurement uncertainty, sampling uncertainty, data pre-processing uncertainty, method uncertainty, and model uncertainty, and investigate them in particular in the context of regression analyses. Therefore, we consider data from observational studies with the focus on high dimensionality and heterogeneous variables, which are characteristics of growing importance. High dimensional data, i.e., data with more variables than observations, play an important role in the area of medical research, where large amounts of molecular data (omics data) can be collected with ever decreasing expense and effort. Where several types of omics data are available, we are additionally faced with heterogeneity. Moreover, heterogeneous data can be found in many observational studies, where data originate from different sources, or where variables of different types are collected. This work comprises four contributions with different approaches to this topic and a different focus of investigation. Contribution 1 can be considered as a practical example to illustrate data pre-processing and method uncertainty in the context of prediction and variable selection from high dimensional and heterogeneous data. In the first part of this paper, we introduce the development of priority-Lasso, a hierarchical method for prediction using multi-omics data. Priority-Lasso is based on standard Lasso and assumes a pre-specified priority order of blocks of data. The idea is to successively fit Lasso models on these blocks of data and to take the linear predictor from every fit as an offset in the fit of the block with next lowest priority. In the second part, we apply this method in a current study of acute myeloid leukemia (AML) and compare its performance to standard Lasso. We illustrate data pre-processing and method uncertainty, caused by different choices of variable definitions and specifications of settings in the application of the method. These choices result in different effect estimates and thus different prediction performances and selected variables. In the second contribution, we compare method uncertainty with sampling uncertainty in the context of variable selection and ranking of omics biomarkers. For this purpose, we develop a user-friendly and versatile framework. We apply this framework on data from AML patients with high dimensional and heterogeneous characteristics and explore three different scenarios: First, variable selection in multivariable regression based on multi-omics data, second, variable ranking based on variable importance measures from random forests, and, third, identification of genes based on differential gene expression analysis. In contributions 3 and 4, we apply the vibration of effects framework, which was initially used to analyze model uncertainty in a large epidemiological study (NHANES), to assess and compare different types of uncertainty. The two contributions intensively address the methodological extension of this framework to different types of uncertainty. In contribution 3, we describe the extension of the vibration of effects framework to sampling and data pre-processing uncertainty. As a practical illustration, we take a large data set from psychological research with heterogeneous variable structure (SAPA-project), and examine sampling, model and data pre-processing uncertainty in the context of logistic regression for varying sample sizes. Beyond the comparison of single types of uncertainty, we introduce a strategy which allows quantifying cumulative model and data pre-processing uncertainty and analyzing their relative contributions to the total uncertainty with a variance decomposition. Finally, we extend the vibration of effects framework to measurement uncertainty in contribution 4. In a practical example, we conduct a comparison study between sampling, model and measurement uncertainty on the NHANES data set in the context of survival analysis. We focus on different scenarios of measurement uncertainty which differ in the choice of variables considered to be measured with error. Moreover, we analyze the behavior of different types of uncertainty with increasing sample sizes in a large simulation study

    Priority-Lasso: a simple hierarchical approach to the prediction of clinical outcome using multi-omics data

    Get PDF
    The inclusion of high-dimensional covariate data in prediction models has become a well-studied topic in the last decades. Although most of these methods do not account for possibly different types of variables in the set of covariates available in the same dataset, there are many such scenarios where the covariates can be structured in blocks of different types. To date, there exist a few computationally intensive approaches that make use of block structures of this kind. In this paper we present priority-Lasso, an intuitive and practical analysis strategy for building prediction models based on Lasso that takes such block structures into account. It requires the definition of a priority order of blocks of data. Lasso models are calculated successively for every block and the fitted values of every step are included as an offset in the fit of the next step. We apply priority-Lasso with different settings on a dataset of acute myeloid leukemia (AML) consisting of clinical variables, cytogenetics, gene mutations and expression variables, and compare its performance on an independent validation dataset to standard Lasso models. The results show that priority-Lasso is able to keep pace with Lasso in terms of prediction accuracy. Variables of blocks with higher priorities are favored over variables of blocks with lower priority, which results in an easily useable and transportable model for clinical practice

    Examining the robustness of observational associations to model, measurement and sampling uncertainty with the vibration of effects framework

    Get PDF
    BACKGROUND The results of studies on observational associations may vary depending on the study design and analysis choices as well as due to measurement error. It is important to understand the relative contribution of different factors towards generating variable results, including low sample sizes, researchers' flexibility in model choices, and measurement error in variables of interest and adjustment variables. METHODS We define sampling, model and measurement uncertainty, and extend the concept of vibration of effects in order to study these three types of uncertainty in a common framework. In a practical application, we examine these types of uncertainty in a Cox model using data from the National Health and Nutrition Examination Survey. In addition, we analyse the behaviour of sampling, model and measurement uncertainty for varying sample sizes in a simulation study. RESULTS All types of uncertainty are associated with a potentially large variability in effect estimates. Measurement error in the variable of interest attenuates the true effect in most cases, but can occasionally lead to overestimation. When we consider measurement error in both the variable of interest and adjustment variables, the vibration of effects are even less predictable as both systematic under- and over-estimation of the true effect can be observed. The results on simulated data show that measurement and model vibration remain non-negligible even for large sample sizes. CONCLUSION Sampling, model and measurement uncertainty can have important consequences for the stability of observational associations. We recommend systematically studying and reporting these types of uncertainty, and comparing them in a common framework

    Comparing the vibration of effects due to model, data pre-processing and sampling uncertainty on a large data set in personality psychology

    Get PDF
    Researchers have great flexibility in the analysis of observational data. If combined with selective reporting and pressure to publish, this flexibility can have devastating consequences on the validity of research findings. We extend the recently proposed vibration of effects approach to provide a framework comparing three main sources of uncertainty which lead to instability in observational associations, namely data pre-processing, model and sampling uncertainty. We analyze their behavior for varying sample sizes for two associations in personality psychology. While all types of vibration show a decrease for increasing sample sizes, data pre-processing and model vibration remain non-negligible, even for a sample of over 80000 participants. The increasing availability of large data sets that are not initially recorded for research purposes can make data pre-processing and model choices very influential. We therefore recommend the framework as a tool for the transparent reporting of the stability of research findings

    Keanekaragaman Jamur di Cagar Alam Gunung Mutis Kabupaten Timor Tengah Utara, Nusa Tenggara Timur

    Get PDF
    Jamur merupakan salah satu organisme yang memegang peranan penting dalam menguraikan bahan organik yang sangat kompleks menjadi bahan sederhana sehingga mudah diserap oleh organisme lainnya. Tujuan penelitian untuk mengetahui jenis jamur dan mengetahui tingkat keanekaragaman jenis jamur pada hutan cagar alam gunung Mutis. Metode yang digunakan adalah metode jelajah setiap plot dengan mencatat jenis jamur yang ditemukan pada kawasan tersebut dan dilanjutkan dengan proses identifikasi jenis jamur yang ditemukan. Pengambilan sampel dengan koleksi dan dokumentasi. Hasil penelitian menunjukkan bahwa terdapat 340 individu pada 17 spesies jamur dengan tingkat keanekaragaman : 1,510 yang menunjukkan tingkat keanekaragam spesies jamur yang tinggi. Spesies jamur yang paling mendominasi adalah jamur Microporus sp dan Polyporus sp, sedangkan jenis lain keberadaannya masih tergolong rendah seperti Polyporus squamosus, Coriolus hirsutus, Pycnoporus cinnabarinus, Tyromyces sambuceus, Fomytopsis pinicola, Microporus perula, Trametes orientalis, Piptoporus betulinus, Auricula polytricha, Auricularia auricula, Elfvingia applanata, Fomes sp, Laccaria vinaceoavellaneae, Paxillus curtisii, Pleurotus pulmorius

    Priority-Lasso: a simple hierarchical approach to the prediction of clinical outcome using multi-omics data

    Get PDF
    BACKGROUND The inclusion of high-dimensional omics data in prediction models has become a well-studied topic in the last decades. Although most of these methods do not account for possibly different types of variables in the set of covariates available in the same dataset, there are many such scenarios where the variables can be structured in blocks of different types, e.g., clinical, transcriptomic, and methylation data. To date, there exist a few computationally intensive approaches that make use of block structures of this kind. RESULTS In this paper we present priority-Lasso, an intuitive and practical analysis strategy for building prediction models based on Lasso that takes such block structures into account. It requires the definition of a priority order of blocks of data. Lasso models are calculated successively for every block and the fitted values of every step are included as an offset in the fit of the next step. We apply priority-Lasso in different settings on an acute myeloid leukemia (AML) dataset consisting of clinical variables, cytogenetics, gene mutations and expression variables, and compare its performance on an independent validation dataset to the performance of standard Lasso models. CONCLUSION The results show that priority-Lasso is able to keep pace with Lasso in terms of prediction accuracy. Variables of blocks with higher priorities are favored over variables of blocks with lower priority, which results in easily usable and transportable models for clinical practice

    Mapping development and health effects of cooking with solid fuels in low-income and middle-income countries, 2000-18 : a geospatial modelling study

    Get PDF
    Background More than 3 billion people do not have access to clean energy and primarily use solid fuels to cook. Use of solid fuels generates household air pollution, which was associated with more than 2 million deaths in 2019. Although local patterns in cooking vary systematically, subnational trends in use of solid fuels have yet to be comprehensively analysed. We estimated the prevalence of solid-fuel use with high spatial resolution to explore subnational inequalities, assess local progress, and assess the effects on health in low-income and middle-income countries (LMICs) without universal access to clean fuels.Methods We did a geospatial modelling study to map the prevalence of solid-fuel use for cooking at a 5 km x 5 km resolution in 98 LMICs based on 2.1 million household observations of the primary cooking fuel used from 663 population-based household surveys over the years 2000 to 2018. We use observed temporal patterns to forecast household air pollution in 2030 and to assess the probability of attaining the Sustainable Development Goal (SDG) target indicator for clean cooking. We aligned our estimates of household air pollution to geospatial estimates of ambient air pollution to establish the risk transition occurring in LMICs. Finally, we quantified the effect of residual primary solid-fuel use for cooking on child health by doing a counterfactual risk assessment to estimate the proportion of deaths from lower respiratory tract infections in children younger than 5 years that could be associated with household air pollution.Findings Although primary reliance on solid-fuel use for cooking has declined globally, it remains widespread. 593 million people live in districts where the prevalence of solid-fuel use for cooking exceeds 95%. 66% of people in LMICs live in districts that are not on track to meet the SDG target for universal access to clean energy by 2030. Household air pollution continues to be a major contributor to particulate exposure in LMICs, and rising ambient air pollution is undermining potential gains from reductions in the prevalence of solid-fuel use for cooking in many countries. We estimated that, in 2018, 205000 (95% uncertainty interval 147000-257000) children younger than 5 years died from lower respiratory tract infections that could be attributed to household air pollution.Interpretation Efforts to accelerate the adoption of clean cooking fuels need to be substantially increased and recalibrated to account for subnational inequalities, because there are substantial opportunities to improve air quality and avert child mortality associated with household air pollution. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
    corecore