21 research outputs found

    Disparity in Selmer ranks of quadratic twists of elliptic curves

    Full text link
    We study the parity of 2-Selmer ranks in the family of quadratic twists of an arbitrary elliptic curve E over an arbitrary number field K. We prove that the fraction of twists (of a given elliptic curve over a fixed number field) having even 2-Selmer rank exists as a stable limit over the family of twists, and we compute this fraction as an explicit product of local factors. We give an example of an elliptic curve E such that as K varies, these fractions are dense in [0, 1]. More generally, our results also apply to p-Selmer ranks of twists of 2-dimensional self-dual F_p-representations of the absolute Galois group of K by characters of order p.Comment: This version corrects a typo in the published version. Just before the last displayed equation before Conjecture 7.12 (page 313 of the published version, page 23 of this manuscript), "...Sha(E/K) is finite" should be "...Sha(E^\chi/K) is finite". This typo does not affect anything else in the tex

    The distribution of the Tamagawa ratio in the family of elliptic curves with a two-torsion point

    Get PDF
    In recent work, Bhargava and Shankar have shown that the average size of the 22-Selmer group of an elliptic curve over Q\mathbb{Q} is exactly 33, and Bhargava and Ho have shown that the average size of the 22-Selmer group in the family of elliptic curves with a marked point is exactly 66. In contrast to these results, we show that the average size of the 22-Selmer group in the family of elliptic curves with a two-torsion point is unbounded. In particular, the existence of a two-torsion point implies the existence of rational isogeny. A fundamental quantity attached to a pair of isogenous curves is the Tamagawa ratio, which measures the relative sizes of the Selmer groups associated to the isogeny and its dual. Building on previous work in which we considered the Tamagawa ratio in quadratic twist families, we show that, in the family of all elliptic curves with a two-torsion point, the Tamagawa ratio is essentially governed by a normal distribution with mean zero and growing variance
    corecore