14 research outputs found

    Land management in a post-Brexit UK: An opportunity for integrated catchment management to deliver multiple benefits?

    Get PDF
    Recent environmental policy bills outlined by the UK government in the wake of Brexit highlight an intention by the government to take a more holistic approach to land and water management. While previous legislation has taken a siloed approach to landscape management, often focusing on point source pollutions, the Agriculture and Environment Bills present the opportunity for effective protection of the environment while providing wider environmental benefits such as reduced flood risk, increased biodiversity and provision of cultural services. We outline how and why previous European Union legislation has failed to deliver the intended environmental improvements relating to agricultural land management in the UK. We highlight how the adoption of integrated catchment management and proposed “payment‐for‐outcome” schemes at a large scale could be used to push the United Kingdom into the forefront of sustainable farming, land management and championing environmental benefits to society

    A river classification scheme to assess macroinvertebrate sensitivity to water abstraction pressures

    Get PDF
    The concept of environmental flows has been developed to manage human alteration of river flow regimes, as effective management requires an understanding of the ecological consequences of flow alteration. This study explores the concept of macroinvertebrate sensitivity to river flow alteration to establish robust quantitative relationships between biological indicators and hydrological pressures. Existing environmental flow classifications used by the environmental regulator for English rivers were tested using multilevel regression modelling. Results showed a weak relationship between the current abstraction sensitivity classification and macroinvertebrate response to flow pressure. An alternative approach, based on physically‐derived river types, was a better predictor of macroinvertebrate response. Intermediate sized lowland streams displayed the best model fit, while upland rivers exhibited poor model performance. A better understanding of the ecological response to flow variation in different river types could help water resource managers develop improved ecologically appropriate flow regimes, which support the integrity of river ecosystems

    The influence of land management and seasonal changes in surface vegetation on flood mitigation in two UK upland catchments

    Get PDF
    As the frequency and magnitude of storm events increase with climate change, understanding how season and management influence flood peaks is essential. The influence of season and management of grasslands on flood peak timing and magnitude was modelled for Swindale and Calderdale, two catchments in northern England. Spatially-Distributed TOPMODEL was used to investigate two scenarios across four storm events using empirically-based soil and vegetation data. The first scenario applied seasonal changes in vegetative roughness, quantifying the effect on flood peaks at catchment scale. The second scenario modelled the influence of grassland management from historical high-intensity grazing to a series of natural succession stages between grassland and woodland, and a conservation-based management. Model outputs were analysed by flow type, measuring total, overland and base flow peaks at the catchment outlet. Seasonal changes to vegetation were found to increase overland flow peaks by up to +2.2% in winter and reduce them by −5.5% in summer compared to the annual average. Percentage changes in flood peak due to hillslope grassland management scenarios were more substantial; overland flow peaks were reduced by up to 41% in Calderdale where extensive woodland development was the most effective mitigation strategy, and up to 35% in Swindale, where a rank grassland dominated catchment was the most effective. Conservation-based farming practices were also useful, reducing overland flow peak by up to 42% compared to the high intensity grazing scenario. Neither management nor seasonality changed the timing of runoff peaks by >45 min. Where overland flow dominates, especially in catchments with shallow soils, surface roughness was found to be more influential than soil permeability for flood mitigation. We recommend that seasonal changes to roughness are considered alongside the spatial distribution of Natural Flood Management in mosaiced upland catchments

    River ecosystem resilience to extreme flood events

    Get PDF
    Floods have a major influence in structuring river ecosystems. Considering projected increases in high‐magnitude rainfall events with climate change, major flooding events are expected to increase in many regions of the world. However, there is uncertainty about the effect of different flooding regimes and the importance of flood timing in structuring riverine habitats and their associated biotic communities. In addition, our understanding of community response is hindered by a lack of long‐term datasets to evaluate river ecosystem resilience to flooding. Here we show that in a river ecosystem studied for 30 years, a major winter flood reset the invertebrate community to a community similar to one that existed 15 years earlier. The community had not recovered to the preflood state when recurrent summer flooding 9 years later reset the ecosystem back to an even earlier community. Total macroinvertebrate density was reduced in the winter flood by an order of magnitude more than the summer flood. Meiofaunal invertebrates were more resilient to the flooding than macroinvertebrates, possibly due to their smaller body size facilitating greater access to in‐stream refugia. Pacific pink salmon escapement was markedly affected by the winter flood when eggs were developing in redds, compared to summer flooding, which occurred before the majority of eggs were laid. Our findings inform a proposed conceptual model of three possible responses to flooding by the invertebrate community in terms of switching to different states and effects on resilience to future flooding events. In a changing climate, understanding these responses is important for river managers to mitigate the biological impacts of extreme flooding effects

    Low flow controls on stream thermal dynamics

    Get PDF
    Water level fluctuations in surface water bodies, and in particular low flow drought conditions, are expected to become more frequent and more severe in the future due to the impacts of global environmental change. Variations in water level, and therefore in-channel water volume, not only have the potential to directly impact stream temperature, but also aquatic vegetation coverage which, in turn, may affect stream temperature patterns and dynamics. Manipulation experiments provide a systematic approach to investigate the multiple environmental controls on stream temperature patterns. This study aims to use temperature data loggers and fibre optic distributed temperature sensing (FO-DTS) to investigate potential drought impacts on patterns in surface water and streambed temperature as a function of change in water column depth. To quantify the joint impacts of water level and associated vegetation coverage on stream temperatures, investigations were conducted in outdoor flumes using identical pool-riffle-pool features, but with spatially variable water levels representative of different drought severity conditions. Naturally evolved vegetation growth in the flumes ranged from sparse vegetation coverage in the shallow flumes to dense colonization in the deepest. Observed surface water and streambed temperature patterns differed significantly within the range of water levels and degrees of vegetation coverage studied. Streambed temperature patterns were more pronounced in the shallowest flume, with minimum and maximum temperature values and diurnal temperature variation being more intensively affected by variation in meteorological conditions than daily average temperatures. Spatial patterns in streambed temperature correlated strongly with morphologic features in all flumes, with riffles coinciding with the highest temperatures, and pools representing areas with the lowest temperatures. In particular, the shallowest flume (comprising multiple exposed features) exhibited a maximum upstream-downstream temperature warming of 3.3 °C (T in = 10.3 °C, T out = 13.5 °C), exceeding the warming observed in the deeper flumes by ∼ 2 °C. Our study reveals significant streambed and water temperature variation caused by the combined impacts of water level and related vegetation coverage. These results highlight the importance of maintaining minimum water levels in lowland rivers during droughts for buffering the impacts of atmospheric forcing on both river and streambed water temperatures

    Enhanced hyporheic exchange flow around woody debris does not increase nitrate reduction in a sandy streambed

    Get PDF
    Anthropogenic nitrogen pollution is a critical problem in freshwaters. Although riverbeds are known to attenuate nitrate, it is not known if large woody debris (LWD) can increase this ecosystem service through enhanced hyporheic exchange and streambed residence time. Over a year, we monitored the surface water and pore water chemistry at 200 points along a ~50m reach of a lowland sandy stream with three natural LWD structures. We directly injected 15N-nitrate at 108 locations within the top 1.5m of the streambed to quantify in situ denitrification, anammox and dissimilatory nitrate reduction to ammonia, which, on average, contributed 85%, 10% and 5% of total nitrate reduction, respectively. Total nitrate reducing activity ranged from 0-16µM h-1 and was highest in the top 30cm of the stream bed. Depth, ambient nitrate and water residence time explained 44% of the observed variation in nitrate reduction; fastest rates were associated with slow flow and shallow depths. In autumn, when the river was in spate, nitrate reduction (in situ and laboratory measures) was enhanced around the LWD compared with non-woody areas, but this was not seen in the spring and summer. Overall, there was no significant effect of LWD on nitrate reduction rates in surrounding streambed sediments, but higher pore water nitrate concentrations and shorter residence times, close to LWD, indicated enhanced delivery of surface water into the streambed under high flow. When hyporheic exchange is too strong, overall nitrate reduction is inhibited due to short flow-paths and associated high oxygen concentrations

    Major flood disturbance alters river ecosystem evolution

    No full text
    Floods, major formative drivers of channel and floodplain structure and associated riparian and in-stream communities, are increasing in intensity and magnitude with climate change in many regions of the world. However, predicting how floods will affect stream channels and their communities as climate changes is limited by a lack of long-term pre-flood baseline data sets across different organismal groups. Here we show salmon, macroinvertebrate and meiofauna communities, monitored for 30 years in a system evolving owing to glacier retreat, were modified significantly by a major rainfall event that caused substantial geomorphic change to the stream channel. Pink salmon, reduced to one-tenth of pre-flood spawner densities, recovered within two generations. Macroinvertebrate community structure was significantly different after the flood as some pioneer taxa, which had become locally extinct, recolonized whereas some later colonizers were eliminated. The trajectory of the macroinvertebrate succession was reset towards the community structure of 15 years earlier. Meiofaunal abundance recovered rapidly and richness increased post-flood with some previously unrecorded taxa colonizing. Biotic recovery was independent of geomorphological recovery. Markedly different responses according to the organismal group suggest caution is required when applying general aquatic ecosystem theories and concepts to predict flood events

    Decline in Ecosystem δ¹³C and Mid-Successional Nitrogen Loss in a Two-Century Postglacial Chronosequence

    Get PDF
    Uncertainty about controls on long-term carbon (C) and nitrogen (N) balance, turnover, and isotopic composition currently limits our ability to predict ecosystem response to disturbance and landscape change. We used a two-century, postglacial chronosequence in Glacier Bay, Alaska, to explore the influence of C and N dynamics on soil and leaf stable isotopes. C dynamics were closely linked to soil hydrology, with increasing soil water retention during ecosystem development resulting in a linear decrease in foliar and soil δ¹³C, independent of shifts in vegetation cover and despite constant precipitation across sites. N dynamics responded to interactions among soil development, vegetation type, microbial activity, and topography. Contrary to the predictions of nutrient retention theory, potential nitrification and denitrification were high, relative to inorganic N stocks, from the beginning of the chronosequence, and gaseous and hydrological N losses were highest at mid-successional sites, 140–165 years since deglaciation. Though leaching of dissolved N is considered the predominant pathway of N loss at high latitudes, we found that gaseous N loss was more tightly correlated with δ¹⁵N enrichment. These results suggest that δ¹³C in leaves and soil can depend as much on soil development and associated water availability as on climate and that N availability and export depend on interactions between physical and biological state factors
    corecore