131 research outputs found

    Flux estimates of isoprene, methanol and acetone from airborne PTR-MS measurements over the tropical rainforest during the GABRIEL 2005 campaign

    Get PDF
    Tropical forests are a strong source of biogenic volatile organic compounds (BVOCs) to the atmosphere which can potentially impact the atmospheric oxidation capacity. Here we present airborne and ground-based BVOC measurements representative for the long dry season covering a large area of the northern Amazonian rainforest (6-3° N, 50-59° W). The measurements were conducted during the October 2005 GABRIEL (Guyanas Atmosphere-Biosphere exchange and Radicals Intensive Experiment with the Learjet) campaign. The vertical (35 m to 10 km) and diurnal (09:00-16:00) profiles of isoprene, its oxidation products methacrolein and methyl vinyl ketone and methanol and acetone, measured by PTR-MS (Proton Transfer Reaction Mass Spectrometry), have been used to empirically estimate their emission fluxes from the forest canopy on a regional scale. The mixed layer isoprene emission flux, inferred from the airborne measurements above 300 m, is 5.7 mg isoprene m-2 h-1 after compensating for chemistry and ~6.9 mg isoprene m-2 h-1 taking detrainment into account. This surface flux is in general agreement with previous tropical forest studies. Inferred methanol and acetone emission fluxes are 0.5 mg methanol m¿2 h¿1 and 0.35 mg acetone m-2 h-1, respectively. The BVOC measurements were compared with fluxes and mixing ratios simulated with a single-column chemistry and climate model (SCM). The inferred isoprene flux is substantially smaller than that simulated with an implementation of a commonly applied BVOC emission algorithm in the SCM

    Total OH reactivity measurements using a new fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

    Get PDF
    The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH). Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date, direct measurements of total OH reactivity have been either performed using a Laser-Induced Fluorescence (LIF) system ("pump-and-probe" or "flow reactor") or the Comparative Reactivity Method (CRM) with a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS). Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photoionization Detector (GC-PID). Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques. <br><br> Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole) with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60–70 s), sensitivity (LOD 3–6 s<sup>−1</sup>) and overall uncertainty (25% in optimum conditions) for total OH reactivity were similar to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests) it presents a viably economical alternative for groups interested in total OH reactivity observations

    "Last-Mile" preparation for a potential disaster

    Get PDF
    Extreme natural events, like e.g. tsunamis or earthquakes, regularly lead to catastrophes with dramatic consequences. In recent years natural disasters caused hundreds of thousands of deaths, destruction of infrastructure, disruption of economic activity and loss of billions of dollars worth of property and thus revealed considerable deficits hindering their effective management: Needs for stakeholders, decision-makers as well as for persons concerned include systematic risk identification and evaluation, a way to assess countermeasures, awareness raising and decision support systems to be employed before, during and after crisis situations. The overall goal of this study focuses on interdisciplinary integration of various scientific disciplines to contribute to a tsunami early warning information system. In comparison to most studies our focus is on high-end geometric and thematic analysis to meet the requirements of small-scale, heterogeneous and complex coastal urban systems. Data, methods and results from engineering, remote sensing and social sciences are interlinked and provide comprehensive information for disaster risk assessment, management and reduction. In detail, we combine inundation modeling, urban morphology analysis, population assessment, socio-economic analysis of the population and evacuation modeling. The interdisciplinary results eventually lead to recommendations for mitigation strategies in the fields of spatial planning or coping capacity

    Characterizing correlations of flow oscillations at bottlenecks

    Full text link
    "Oscillations" occur in quite different kinds of many-particle-systems when two groups of particles with different directions of motion meet or intersect at a certain spot. We present a model of pedestrian motion that is able to reproduce oscillations with different characteristics. The Wald-Wolfowitz test and Gillis' correlated random walk are shown to hold observables that can be used to characterize different kinds of oscillations

    Oxygenated compounds in aged biomass burning plumes over the Eastern Mediterranean: evidence for strong secondary production of methanol and acetone

    No full text
    International audienceAirborne measurements of acetone, methanol, PAN, acetonitrile (by Proton Transfer Reaction Mass Spectrometry), and CO (by Tunable Diode Laser Absorption Spectroscopy) have been performed during the Mediterranean Intensive Oxidants Study (MINOS August 2001). We have identified ten biomass burning plumes from strongly elevated acetonitrile mixing ratios. The characteristic biomass burning signatures obtained from these plumes reveal secondary production of acetone and methanol, while CO photochemically declines in the plumes. Mean excess mixing ratios - normalized to CO - of 1.8%, 0.20%, 3.8%, and 0.65% for acetone, acetonitrile, methanol, and PAN, respectively, were found. By scaling to an assumed global annual source of 663-807Tg CO, biomass burning emissions of 25-31 and 29-35 Tg/yr for acetone and methanol are estimated, respectively. Our measurements suggest that the present biomass burning contributions of acetone and methanol are significantly underestimated due to the neglect of secondary formation within the plume. Median acetonitrile mixing ratios throughout the troposphere were around 150pmol/mol, in accord with current biomass burning inventories and an atmospheric lifetime of ~6 months

    Ozone production and trace gas correlations during the June 2000 MINATROC intensive measurement campaign at Mt. Cimone

    Get PDF
    An intensive measurement campaign was performed in June 2000 at the Mt. Cimone station (44°11' N-10°42' E, 2165 m asl, the highest mountain in the northern Italian Apennines) to study photochemical ozone production in the lower free troposphere. In general, average mixing ratios of important trace gases were not very high (121 ± 20 ppbv CO, 0.284 ± 0.220 ppbv NOx, 1.15 ± 0.8 ppbv NOy, 58 ± 9 ppbv O<sub>3</sub>), which indicates a small contribution by local pollution. Those trace gas levels are representative of continental background air, which is further supported by the analysis of VOCs (e.g.: C<sub>2</sub>H<sub>6</sub> = (905 ± 200) pptv, C<sub>3</sub>H<sub>8</sub> = (268 ±110) pptv, C<sub>2</sub>H<sub>2</sub> = (201 ± 102) pptv, C<sub>5</sub>H<sub>8</sub> = (111 ± 124) pptv, benzene = (65 ± 33) pptv). Furthermore, significant diurnal variations for a number of trace gases (O<sub>3</sub>, CO, NOx, NOy, HCHO) indicate the presence of free tropospheric airmasses at nighttime as a consequence of local catabatic winds. Average mid-day peroxy radical concentrations at Mt. Cimone are of the order of 30 pptv. At mean NO concentrations of the order of 40 pptv this gives rise to significant in situ net O<sub>3</sub> production of 0.1-0.3 ppbv/hr. The importance of O<sub>3 </sub>production is supported by correlations between O<sub>3</sub>, CO, NOz, and HCHO, and between HCHO, CO and NOy

    The two-proton shell gap in Sn isotopes

    Full text link
    We present an analysis of two-proton shell gaps in Sn isotopes. As the theoretical tool we use self-consistent mean-field models, namely the relativistic mean-field model and the Skyrme-Hartree-Fock approach, both with two different pairing forces, a delta interaction (DI) model and a density-dependent delta interaction (DDDI). We investigate the influence of nuclear deformation as well as collective correlations and find that both effects contribute significantly. Moreover, we find a further significant dependence on the pairing force used. The inclusion of deformation plus correlation effects and the use of DDDI pairing provides agreement with the data.Comment: gzipped tar archiv containing LaTeX source, bibliography file (*.bbl), all figures as *.eps, and the style file

    Properties of odd nuclei and the impact of time-odd mean fields: A systematic Skyrme-Hartree-Fock analysis

    Get PDF
    We present a systematic analysis of the description of odd nuclei by the Skyrme-Hartree-Fock approach augmented with pairing in BCS approximation and blocking of the odd nucleon. Current and spin densities in the Skyrme functional produce time-odd mean fields (TOMF) for odd nuclei. Their effect on basic properties (binding energies, odd-even staggering, separation energies and spectra) is investigated for the three Skyrme parameterizations SkI3, SLy6, and SV-bas. About 1300 spherical and axially-deformed odd nuclei with 16 < Z < 92 are considered. The calculations demonstrate that the TOMF effect is generally small, although not fully negligible. The influence of the Skyrme parameterization and the consistency of the calculations are much more important. With a proper choice of the parameterization, a good description of binding energies and their differences is obtained, comparable to that for even nuclei. The description of low-energy excitation spectra of odd nuclei is of varying quality depending on the nucleus

    Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: airborne measurements

    Get PDF
    Direct measurements of OH and HO&lt;sub&gt;2&lt;/sub&gt; over a tropical rainforest were made for the first time during the GABRIEL campaign in October 2005, deploying the custom-built HORUS instrument (HydrOxyl Radical measurement Unit based on fluorescence Spectroscopy), adapted to fly in a Learjet wingpod. Biogenic hydrocarbon emissions were expected to strongly reduce the OH and HO&lt;sub&gt;2&lt;/sub&gt; mixing ratios as the air is transported from the ocean over the forest. However, surprisingly high mixing ratios of both OH and HO&lt;sub&gt;2&lt;/sub&gt; were encountered in the boundary layer over the rainforest. &lt;br&gt;&lt;br&gt; The HORUS instrumentation and calibration methods are described in detail and the measurement results obtained are discussed. The extensive dataset collected during GABRIEL, including measurements of many other trace gases and photolysis frequencies, has been used to quantify the main sources and sinks of OH. Comparison of these measurement-derived formation and loss rates of OH indicates strong previously overlooked recycling of OH in the boundary layer over the tropical rainforest, occurring in chorus with isoprene emission
    corecore