108 research outputs found
Untersuchung der Einkopplungen von UWB-Pulsen auf Funksysteme im 2,4-GHz-ISM-Band
Dieser Bericht fasst die durchgeführten Messungen zur Abschätzung
möglicher Kopplung elektromagnetischer Energie ausgehend von abgestrahlten
UWB-Pulsen auf Funkübertragungssysteme im 2,4-GHz-ISM-Band zusammen. Dabei
wird genauer auf die sogenannte Frontdoor- und Backdoorkopplung eingegangen.
Während für die Abschätzung der Frontdoorkopplung generische
PCB-Antennen untersucht wurden, sind für die Backdoorkopplung
Standard-USB-Funkmodule zum Einsatz gekommen. Es wird im Gesamten eine
Abschätzung gegeben, inwieweit UWB-Pulse Funkübertragungssysteme
beeinflussen können. Die durchgeführten Messungen wurden mit Hilfe einer
GTEM-Zelle in Verbindung mit dem UWB-Pulsgenerator PBG3 der Firma Kentech
durchgeführt. Weiterhin sind die Auswirkungen von UWB-Pulsen auf ein reales
Funkübertragungssystem im 2,4-GHz-ISM-Band untersucht worden
Theory of attosecond delays in laser-assisted photoionization
We study the temporal aspects of laser-assisted extreme ultraviolet (XUV)
photoionization using attosecond pulses of harmonic radiation. The aim of this
paper is to establish the general form of the phase of the relevant transition
amplitudes and to make the connection with the time-delays that have been
recently measured in experiments. We find that the overall phase contains two
distinct types of contributions: one is expressed in terms of the phase-shifts
of the photoelectron continuum wavefunction while the other is linked to
continuum--continuum transitions induced by the infrared (IR) laser probe. Our
formalism applies to both kinds of measurements reported so far, namely the
ones using attosecond pulse trains of XUV harmonics and the others based on the
use of isolated attosecond pulses (streaking). The connection between the
phases and the time-delays is established with the help of finite difference
approximations to the energy derivatives of the phases. This makes clear that
the observed time-delays is a sum of two components: a one-photon Wigner-like
delay and an universal delay that originates from the probing process itself.Comment: 15 pages, 10 figures, special issue 'Attosecond spectroscopy' Chem.
Phy
Phase Measurement of Resonant Two-Photon Ionization in Helium
We study resonant two-color two-photon ionization of Helium via the 1s3p 1P1
state. The first color is the 15th harmonic of a tunable titanium sapphire
laser, while the second color is the fundamental laser radiation. Our method
uses phase-locked high-order harmonics to determine the {\it phase} of the
two-photon process by interferometry. The measurement of the two-photon
ionization phase variation as a function of detuning from the resonance and
intensity of the dressing field allows us to determine the intensity dependence
of the transition energy.Comment: 4 pages, 5 figures, under consideratio
Walking Through the Method Zoo: Does Higher Education Really Meet Software Industry Demands?
Software engineering educators are continually challenged by rapidly evolving concepts, technologies, and industry demands. Due to the omnipresence of software in a digitalized society, higher education institutions (HEIs) have to educate the students such that they learn how to learn, and that they are equipped with a profound basic knowledge and with latest knowledge about modern software and system development. Since industry demands change constantly, HEIs are challenged in meeting such current and future demands in a timely manner. This paper analyzes the current state of practice in software engineering education. Specifically, we want to compare contemporary education with industrial practice to understand if frameworks, methods and practices for software and system development taught at HEIs reflect industrial practice. For this, we conducted an online survey and collected information about 67 software engineering courses. Our findings show that development approaches taught at HEIs quite closely reflect industrial practice. We also found that the choice of what process to teach is sometimes driven by the wish to make a course successful. Especially when this happens for project courses, it could be beneficial to put more emphasis on building learning sequences with other courses
Probing single-photon ionization on the attosecond time scale
We study photoionization of argon atoms excited by attosecond pulses using an
interferometric measurement technique. We measure the difference in time delays
between electrons emitted from the and from the shell, at
different excitation energies ranging from 32 to 42 eV. The determination of
single photoemission time delays requires to take into account the measurement
process, involving the interaction with a probing infrared field. This
contribution can be estimated using an universal formula and is found to
account for a substantial fraction of the measured delay.Comment: 4 pages, 4 figures, under consideratio
Attosecond electron spectroscopy using a novel interferometric pump-probe technique
We present an interferometric pump-probe technique for the characterization
of attosecond electron wave packets (WPs) that uses a free WP as a reference to
measure a bound WP. We demonstrate our method by exciting helium atoms using an
attosecond pulse with a bandwidth centered near the ionization threshold, thus
creating both a bound and a free WP simultaneously. After a variable delay, the
bound WP is ionized by a few-cycle infrared laser precisely synchronized to the
original attosecond pulse. By measuring the delay-dependent photoelectron
spectrum we obtain an interferogram that contains both quantum beats as well as
multi-path interference. Analysis of the interferogram allows us to determine
the bound WP components with a spectral resolution much better than the inverse
of the attosecond pulse duration.Comment: 5 pages, 4 figure
Catching up with Method and Process Practice: An Industry-Informed Baseline for Researchers
Software development methods are usually not applied by the book.companies are under pressure to continuously deploy software products that meet market needs and stakeholders\u27 requests. To implement efficient and effective development processes, companies utilize multiple frameworks, methods and practices, and combine these into hybrid methods. A common combination contains a rich management framework to organize and steer projects complemented with a number of smaller practices providing the development teams with tools to complete their tasks. In this paper, based on 732 data points collected through an international survey, we study the software development process use in practice. Our results show that 76.8% of the companies implement hybrid methods.company size as well as the strategy in devising and evolving hybrid methods affect the suitability of the chosen process to reach company or project goals. Our findings show that companies that combine planned improvement programs with process evolution can increase their process\u27 suitability by up to 5%
Determining Context Factors for Hybrid Development Methods with Trained Models
Selecting a suitable development method for a specific project context is one of the most challenging activities in process design. Every project is unique and, thus, many context factors have to be considered. Recent research took some initial steps towards statistically constructing hybrid development methods, yet, paid little attention to the peculiarities of context factors influencing method and practice selection. In this paper, we utilize exploratory factor analysis and logistic regression analysis to learn such context factors and to identify methods that are correlated with these factors. Our analysis is based on 829 data points from the HELENA dataset. We provide five base clusters of methods consisting of up to 10 methods that lay the foundation for devising hybrid development methods. The analysis of the five clusters using trained models reveals only a few context factors, e.g., project/product size and target application domain, that seem to significantly influence the selection of methods. An extended descriptive analysis of these practices in the context of the identified method clusters also suggests a consolidation of the relevant practice sets used in specific project contexts
Photoemission-time-delay measurements and calculations close to the 3s-ionization-cross-section minimum in Ar
We present experimental measurements and theoretical calculations of photoionization time delays from the 3s and 3p shells in Ar in the photon energy range of 32-42 eV. The experimental measurements are performed by interferometry using attosecond pulse trains and the infrared laser used for their generation. The theoretical approach includes intershell correlation effects between the 3s and 3p shells within the framework of the random-phase approximation with exchange. The connection between single-photon ionization and the two-color two-photon ionization process used in the measurement is established using the recently developed asymptotic approximation for the complex transition amplitudes of laser-assisted photoionization. We compare and discuss the theoretical and experimental results, especially in the region where strong intershell correlations in the 3s -> kp channel lead to an induced "Cooper" minimum in the 3s ionization cross section
- …