16 research outputs found

    In vivo hippocampal subfield volumes in bipolar disorder—A mega-analysis from The Enhancing Neuro Imaging Genetics through Meta-Analysis Bipolar Disorder Working Group

    Get PDF
    The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta‐Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1‐weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed‐effects models and mega‐analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = −0.20), cornu ammonis (CA)1 (d = −0.18), CA2/3 (d = −0.11), CA4 (d = −0.19), molecular layer (d = −0.21), granule cell layer of dentate gyrus (d = −0.21), hippocampal tail (d = −0.10), subiculum (d = −0.15), presubiculum (d = −0.18), and hippocampal amygdala transition area (d = −0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non‐users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD

    Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro Imaging genetics through meta analysis (ENIGMA) Consortium

    Get PDF
    BACKGROUND: The profile of cortical neuroanatomical abnormalities in schizophrenia is not fully understood, despite hundreds of published structural brain imaging studies. This study presents the first meta-analysis of cortical thickness and surface area abnormalities in schizophrenia conducted by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Schizophrenia Working Group. METHODS: The study included data from 4474 individuals with schizophrenia (mean age, 32.3 years; range, 11-78 years; 66% male) and 5098 healthy volunteers (mean age, 32.8 years; range, 10-87 years; 53% male) assessed with standardized methods at 39 centers worldwide. RESULTS: Compared with healthy volunteers, individuals with schizophrenia have widespread thinner cortex (left/right hemisphere: Cohen's d = -0.530/-0.516) and smaller surface area (left/right hemisphere: Cohen's d = -0.251/-0.254), with the largest effect sizes for both in frontal and temporal lobe regions. Regional group differences in cortical thickness remained significant when statistically controlling for global cortical thickness, suggesting regional specificity. In contrast, effects for cortical surface area appear global. Case-control, negative, cortical thickness effect sizes were two to three times larger in individuals receiving antipsychotic medication relative to unmedicated individuals. Negative correlations between age and bilateral temporal pole thickness were stronger in individuals with schizophrenia than in healthy volunteers. Regional cortical thickness showed significant negative correlations with normalized medication dose, symptom severity, and duration of illness and positive correlations with age at onset. CONCLUSIONS: The findings indicate that the ENIGMA meta-analysis approach can achieve robust findings in clinical neuroscience studies; also, medication effects should be taken into account in future genetic association studies of cortical thickness in schizophrenia

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Modelling and analysis of long cables on the generator side of generator transformers

    No full text
    Denne oppgaven presenterer en studie om modellering og analyse av lengre kraftkabler på generatorsiden av en enhetstransformator i et generisk kraftsystem. Studien fokuserer på det teoretiske rammeverket som er nødvendig for å forstå problemet. De teoretiske delene inkluderer grunnleggende elektriske sannheter og deres effekter på hovedkomponentene i et kraftsystem. Den gjenværende teorien diskuterer transiente og resonansproblemer i komponenter i kraftsystemet. Hovedmålet med denne studien er å utvikle en modell som nøyaktig kan forutsi oppførselen til et kraftsystem når kapasitive belastninger eller distribusjonsmidler blir introdusert. Modellen er utviklet ved hjelp av Matlab/Simulink og er validert ved hjelp av eksperimentelle data. Resultatene viser at den utviklede modellen nøyaktig kan forutsi oppførselen til lange kabler på generatorsiden av generatortransformatorer. Denne studien bidrar til forståelsen av oppførselen til lange kabler på generatorsiden av generatortransformatorer og gir grunnlag for videre forskning på dette området

    In vivo hippocampal subfield volumes in schizophrenia and bipolar disorder.

    No full text
    BackgroundHippocampal dysfunction and volume reductions have been reported in patients with schizophrenia and bipolar disorder. The hippocampus consists of anatomically distinct subfields. We investigated to determine whether in vivo volumes of hippocampal subfields differ between clinical groups and healthy control subjects.MethodsClinical examination and magnetic resonance imaging were performed in 702 subjects (patients with schizophrenia spectrum [n = 210; mean age, 32.0 ± 9.3 (SD) years; 59% male], patients with bipolar spectrum [n = 192; mean age, 35.5 ± 11.5 years; 40% male] and healthy control subjects [n = 300; mean age, 35.3 ± 9.9 years; 53% male]). Hippocampal subfield volumes were estimated with FreeSurfer. General linear models were used to explore diagnostic differences in hippocampal subfield volumes, covarying for age, intracranial volume, and medication. Post hoc analyses of associations to psychosis symptoms (Positive and Negative Syndrome Scale) and cognitive function (verbal memory [California Verbal Learning Test, second edition] and IQ [Wechsler Abbreviated Scale of Intelligence]) were performed.ResultsPatient groups had smaller cornu ammonis (CA) subfields CA2/3 (left, p = 7.2 × 10(-6); right, p = 2.3 × 10(-6)), CA4/dentate gyrus (left, p = 1.4 × 10(-5); right, p = 2.3 × 10(-6)), subiculum (left, p = 3.7 × 10(-6); right, p = 2.8 × 10(-8)), and right CA1 (p = .006) volumes than healthy control subjects, but smaller presubiculum volumes were found only in patients with schizophrenia (left, p = 6.7 × 10(-5); right, p = 1.6 × 10(-7)). Patients with schizophrenia had smaller subiculum (left, p = .035; right, p = .031) and right presubiculum (p = .002) volumes than patients with bipolar disorder. Smaller subiculum volumes were related to poorer verbal memory in patients with bipolar disorder and healthy control subjects and to negative symptoms in patients with schizophrenia.ConclusionsHippocampal subfield volume reductions are found in patients with schizophrenia and bipolar disorder. The magnitude of reduction is greater in patients with schizophrenia, particularly in the hippocampal outflow regions presubiculum and subiculum

    Intracranial and subcortical volumes in adolescents with early-onset psychosis: A multisite mega-analysis from the ENIGMA consortium.

    No full text
    Early-onset psychosis disorders are serious mental disorders arising before the age of 18 years. Here, we investigate the largest neuroimaging dataset, to date, of patients with early-onset psychosis and healthy controls for differences in intracranial and subcortical brain volumes. The sample included 263 patients with early-onset psychosis (mean age: 16.4 ± 1.4 years, mean illness duration: 1.5 ± 1.4 years, 39.2% female) and 359 healthy controls (mean age: 15.9 ± 1.7 years, 45.4% female) with magnetic resonance imaging data, pooled from 11 clinical cohorts. Patients were diagnosed with early-onset schizophrenia (n = 183), affective psychosis (n = 39), or other psychotic disorders (n = 41). We used linear mixed-effects models to investigate differences in intracranial and subcortical volumes across the patient sample, diagnostic subgroup and antipsychotic medication, relative to controls. We observed significantly lower intracranial (Cohen's d = -0.39) and hippocampal (d = -0.25) volumes, and higher caudate (d = 0.25) and pallidum (d = 0.24) volumes in patients relative to controls. Intracranial volume was lower in both early-onset schizophrenia (d = -0.34) and affective psychosis (d = -0.42), and early-onset schizophrenia showed lower hippocampal (d = -0.24) and higher pallidum (d = 0.29) volumes. Patients who were currently treated with antipsychotic medication (n = 193) had significantly lower intracranial volume (d = -0.42). The findings demonstrate a similar pattern of brain alterations in early-onset psychosis as previously reported in adult psychosis, but with notably low intracranial volume. The low intracranial volume suggests disrupted neurodevelopment in adolescent early-onset psychosis
    corecore