474 research outputs found

    The evolution of the galactic morphological types in clusters

    Get PDF
    The morphological types of galaxies in nine clusters in the redshift range 0.1<z<0.25 are derived from very good seeing images taken at the NOT and the La Silla Danish telescopes. With the purpose of investigating the evolution of the fraction of different morphological types with redshift, we compare our results with the morphological content of nine distant clusters studied by the MORPHS group, five clusters observed with HST-WFPC2 at redshift z = 0.2-0.3, and Dressler's (1980) large sample of nearby clusters. After having checked the reliability of our morphological classification both in an absolute sense and relative to the MORPHS scheme, we analyze the relative occurrence of elliptical, S0 and spiral galaxies as a function of the cluster properties and redshift. We find a large intrinsic scatter in the S0/E ratio, mostly related to the cluster morphology. In particular, in our cluster sample, clusters with a high concentration of ellipticals display a low S0/E ratio and, vice-versa, low concentration clusters have a high S0/E. At the same time, the trend of the morphological fractions and ratios with redshift clearly points to a morphological evolution: as the redshift decreases, the S0 population tends to grow at the expense of the spiral population, whereas the frequency of Es remains almost constant. We also analyze the morphology-density (MD) relation in our clusters and find that -similarly to higher redshift clusters- a good MD relation exists in the high-concentration clusters, while it is absent in the less concentrated clusters. Finally, the comparison of the MD relation in our clusters with that of the D97 sample suggests that the transformation of spirals into S0 galaxies becomes more efficient with decreasing local density.Comment: 24 pages including 11 figures and 4 tables, accepted for publication in Ap

    The WINGS Survey: a progress report

    Full text link
    A two-band (B and V) wide-field imaging survey of a complete, all-sky X-ray selected sample of 78 clusters in the redshift range z=0.04-0.07 is presented. The aim of this survey is to provide the astronomical community with a complete set of homogeneous, CCD-based surface photometry and morphological data of nearby cluster galaxies located within 1.5 Mpc from the cluster center. The data collection has been completed in seven observing runs at the INT and ESO-2.2m telescopes. For each cluster, photometric data of about 2500 galaxies (down to V~23) and detailed morphological information of about 600 galaxies (down to V~21) are obtained by using specially designed automatic tools. As a natural follow up of the photometric survey, we also illustrate a long term spectroscopic program we are carrying out with the WHT-WYFFOS and AAT-2dF multifiber spectrographs. Star formation rates and histories, as well as metallicity estimates will be derived for about 350 galaxies per cluster from the line indices and equivalent widths measurements, allowing us to explore the link between the spectral properties and the morphological evolution in high- to low-density environments, and across a wide range in cluster X-ray luminosities and optical properties.Comment: 12 pages, 10 eps figures, Proceedings of the SAIt Conference 200

    The hybrid solution for the Fundamental Plane

    Full text link
    By exploiting the database of early-type galaxies (ETGs) members of the WINGS survey of nearby clusters, we address here the long debated question of the origin and shape of the Fundamental Plane (FP). Our data suggest that different physical mechanisms concur in shaping and tilting the FP with respect to the virial plane (VP) expectation. In particular, an hybrid solution in which the structure of galaxies and their stellar population are the main contributors to the FP tilt seems to be favoured. We find that the bulk of the tilt should be attributed to structural non-homology, while stellar population effects play an important but less crucial role. Our data indicate that the differential FP tilt between the V and K-band is due to a sort of entanglement between structural and stellar population effects, for which the inward steepening of color profiles (V-K) tends to increase at increasing the stellar mass of ETGs. The same analysis applied to the ATLAS3D and SDSS data in common with WINGS (WSDSS throughout the paper) confirms our results, the only remarkable difference being the less important role of the stellar mass-to-light-ratio in determining the FP tilt. The ATLAS3D data also suggest that the tilt depends as well on the dark matter (DM) fraction and on the rotational contribution to the kinetic energy (Vrot/sigma). We show that the global properties of the FP can be understood in terms of the underlying correlation among mass, structure and stellar population of ETGs, for which, at increasing the stellar mass, ETGs become (on average) older and more centrally concentrated. Finally, we show that a Malmquist-like selection effect may mimic a differential evolution of the mass-to-light ratio for galaxies of different masses. This should be taken into account in the studies investigating the amount of the so called downsizing phenomenon.Comment: 22 pages, 17 figure

    Atomic Diffusion and Mixing in Old Stars I. VLT/FLAMES-UVES Observations of Stars in NGC 6397

    Full text link
    We present a homogeneous photometric and spectroscopic analysis of 18 stars along the evolutionary sequence of the metal-poor globular cluster NGC 6397 ([Fe/H] = -2), from the main-sequence turnoff point to red giants below the bump. The spectroscopic stellar parameters, in particular stellar-parameter differences between groups of stars, are in good agreement with broad-band and Stroemgren photometry calibrated on the infrared-flux method. The spectroscopic abundance analysis reveals, for the first time, systematic trends of iron abundance with evolutionary stage. Iron is found to be 31% less abundant in the turnoff-point stars than in the red giants. An abundance difference in lithium is seen between the turnoff-point and warm subgiant stars. The impact of potential systematic errors on these abundance trends (stellar parameters, the hydrostatic and LTE approximations) is quantitatively evaluated and found not to alter our conclusions significantly. Trends for various elements (Li, Mg, Ca, Ti and Fe) are compared with stellar-structure models including the effects of atomic diffusion and radiative acceleration. Such models are found to describe the observed element-specific trends well, if extra (turbulent) mixing just below the convection zone is introduced. It is concluded that atomic diffusion and turbulent mixing are largely responsible for the sub-primordial stellar lithium abundances of warm halo stars. Other consequences of atomic diffusion in old metal-poor stars are also discussed.Comment: 20 pages (emulateapj), 11 figures, accepted for publication in Ap

    Apneic Oxygenation in Diagnosis and Treatment of Lung Tumours in an Experimental Porcine Model

    Get PDF
    Objectives: Respiratory movements may complicate diagnostic and therapeutic procedures such as biopsies and stereotactic irradiation therapy in lung cancer patients. An attempt to avoid respiratory movements, up to 30 minutes, long enough for procedures was performed in an animal study.Methods: Ten anaesthetized minipigs ~30 kg were intubated in the trachea and small NiTi-stents were placed in various parts of the lungs. Using a muscle relaxing drug, the pigs were deprived of the ability to breathe for 30 minutes, a longer time than normally used for positioning and irradiation or for biopsies. No attempt to hyperventilate the animals was made prior to the apneic period. After a lung recruitment manoeuvre, a constant oxygen pressure of 20 cm water was applied to the airways. Using X-ray fluoroscopy, the position of the stents and thereby the movements of the lung, were monitored. Arterial gas analyses were performed every 5 minutes during the apneic period.Results: All animals survived 30 minutes of apneic oxygenation. The median arterial oxygen partial pressure actually rose from 11.8 to 54.3 kPa and there were no changes in oxygen saturation. The median arterial carbon dioxide partial pressure rose from 6.9 to 18.7 kPa and the median pH fell from 7.41 to 7.04 during 30 minutes of apneic oxygenation. Our setup, or our strategy of anaesthesia, did not immobilise the internal parts of the lungs satisfactorily, and must be improved before it can be used in a clinical situation. Conclusion: Physiologically, it is possible to stop respiration using apneic oxygenation for periods long enough to perform biopsies or stereotactic radiation therapy

    Structure and deformation of the Kermadec forearc in response to subduction of the Pacific oceanic plate

    Get PDF
    The Tonga-Kermadec forearc is deforming in response to on-going subduction of the Pacific Plate beneath the Indo-Australian Plate. Previous research has focussed on the structural development of the forearc where large bathymetric features such as the Hikurangi Plateau and Louisville Ridge seamount chain are being subducted. Consequently, knowledge of the ‘background’ forearc in regions of normal plate convergence is limited. We report on an ∼250-km-long multichannel seismic reflection profile that was shot perpendicular to the Tonga-Kermadec trench at ∼28°S to determine the lateral and temporal variations in the structure, stratigraphy and deformation of the Kermadec forearc resulting solely from Pacific Plate subduction. Interpretation of the seismic profile, in conjunction with regional swath bathymetry data, shows that the Pacific Plate exhibits horst and graben structures that accommodate bending-induced extensional stresses, generated as the trenchward dip of the crust increases. Trench infill is also much thicker than expected at 1 km which, we propose, results from increased sediment flux into and along the trench. Pervasive normal faulting of the mid-trench slope most likely accommodates the majority of the observed forearc extension in response to basal subduction erosion, and a structural high is located between the mid- and upper-trench slopes. We interpret this high as representing a dense and most likely structurally robust region of crust lying beneath this region. Sediment of the upper-trench slope documents depositional hiatuses and on-going uplift of the arc. Strong along-arc currents appear to erode the Kermadec volcanic arc and distribute this sediment to the surrounding basins, while currents over the forearc redistribute deposits as sediment waves. Minor uplift of the transitional Kermadec forearc, observed just to the north of the profile, appears to relate to an underlying structural trend as well as subduction of the Louisville Ridge seamount chain 250 km to the north. Relative uplift of the Kermadec arc is observed from changes in the tilt of upper-trench slope deposits and extensional faulting of the basement immediately surrounding the Louisville Ridge

    WINGS-SPE Spectroscopy in the WIde-field Nearby Galaxy-cluster Survey

    Full text link
    Aims. We present the results from a comprehensive spectroscopic survey of the WINGS (WIde-field Nearby Galaxy-cluster Survey) clusters, a program called WINGS-SPE. The WINGS-SPE sample consists of 48 clusters, 22 of which are in the southern sky and 26 in the north. The main goals of this spectroscopic survey are: (1) to study the dynamics and kinematics of the WINGS clusters and their constituent galaxies, (2) to explore the link between the spectral properties and the morphological evolution in different density environments and across a wide range in cluster X-ray luminosities and optical properties. Methods. Using multi object fiber fed spectrographs, we observed our sample of WINGS cluster galaxies at an intermediate resolu- tion of 6-9 A and, using a cross-correlation technique, we measured redshifts with a mean accuracy of about 45 km/s. Results. We present redshift measurements for 6137 galaxies and their first analyses. Details of the spectroscopic observations are reported. The WINGS-SPE has about 30% overlap with previously published data sets, allowing us to do both a complete comparison with the literature and to extend the catalogs. Conclusions. Using our redshifts, we calculate the velocity dispersion for all the clusters in the WINGS-SPE sample. We almost trip- licate the number of member galaxies known in each cluster with respect to previous works. We also investigate the X-ray luminosity vs. velocity dispersion relation for our WINGS-SPE clusters, and find it to be consistent with the form Lx proportional to sigma^4.Comment: 16 pages, 10 Postscript figures, accepted for publication in Astronomy and Astrophysic

    Intravascular versus surface cooling for targeted temperature management after out-of-hospital cardiac arrest : an analysis of the TTH48 trial

    Get PDF
    BackgroundThe aim of this study was to explore the performance and outcomes for intravascular (IC) versus surface cooling devices (SFC) for targeted temperature management (TTM) after out-of-hospital cardiac arrest.MethodsA retrospective analysis of data from the Time-differentiated Therapeutic Hypothermia (TTH48) trial (NCT01689077), which compared whether TTM at 33 degrees C for 48h results in better neurologic outcomes compared with standard 24-h duration. Devices were assessed for the speed of cooling and rewarming rates. Precision was assessed by measuring temperature variability (TV), i.e., the standard deviation (SD) of all temperature measurements in the cooling phase. Main outcomes were overall mortality and poor neurological outcome, including death, severe disability, or vegetative status.ResultsA total of 352 patients had available data and were included in the analysis; of those, 218 (62%) were managed with IC. A total of 114/218 (53%) patients with IC and 61/134 (43%) with SFC were cooled for 48h (p=0.22). Time to target temperature (34 degrees C) was significantly shorter for patients treated with endovascular devices (2.2 [1.1-4.0] vs. 4.2 [2.7-6.0] h, pPeer reviewe
    corecore