3,739 research outputs found

    Dynamical GUT breaking and mu-term driven supersymmetry breaking

    Get PDF
    Models for dynamical breaking of supersymmetric grand unified theories are presented. The doublet-triplet splitting problem is absent since the Higgs doublet superfields can be identified with the massless mesons of the strong gauge group whereas there are no massless states corresponding to the colored Higgs fields. Various strong gauge groups SU(Nc), Sp(Nc) and SO(Nc) are examined. In a model with SO(9) strong gauge group, adding the mu-term for the Higgs fields triggers to break supersymmetry in a meta-stable vacuum. The pattern of the supersymmetry breaking parameters is predicted to be the gauge-mediation type with modifications in the Higgs sector.Comment: 23 pages, 1 figure; version to appear in PR

    Making confining strings out of mesons

    Full text link
    The light mesons such as pi, rho, omega, f0, and a0 are possible candidates of magnetic degrees of freedom, if a magnetic dual picture of QCD exists. We construct a linear sigma model to describe spontaneous breaking of the magnetic gauge group, in which there is a stable vortex configuration of vector and scalar mesons. We numerically examine whether such a string can be interpreted as the confining string. By using meson masses and couplings as inputs, we calculate the tension of the string as well as the strength of the Coulomb force between static quarks. They are found to be consistent with those inferred from the quarkonium spectrum and the Regge trajectories of hadrons. By using the same Lagrangian, the critical temperature of the QCD phase transition is estimated, and a non-trivial flavor dependence is predicted. We also discuss a possible connection between the Seiberg duality and the magnetic model we studied.Comment: 22 pages, 2 figures, 3 tables, typos corrected, references adde

    Direct Mediation of Meta-Stable Supersymmetry Breaking

    Get PDF
    The supersymmetric SU(Nc) Yang-Mills theory coupled to Nf matter fields in the fundamental representation has meta-stable vacua with broken supersymmetry when Nc < Nf < 3/2 Nc. By gauging the flavor symmetry, this model can be coupled directly to the standard model. We show that it is possible to make a slight deformation to the model so that gaugino masses are generated and the Landau pole problem can be avoided. The deformed model has simple realizations on intersecting branes in string theory, where various features of the meta-stable vacua are encoded geometrically as brane configurations.Comment: 22 pages, 4 figures, a reference added, version to appear in PR

    Sex Differences in Recombination in Sticklebacks.

    Get PDF
    Recombination often differs markedly between males and females. Here we present the first analysis of sex-specific recombination in Gasterosteus sticklebacks. Using whole-genome sequencing of 15 crosses between G. aculeatus and G. nipponicus, we localized 698 crossovers with a median resolution of 2.3 kb. We also used a bioinformatic approach to infer historical sex-averaged recombination patterns for both species. Recombination is greater in females than males on all chromosomes, and overall map length is 1.64 times longer in females. The locations of crossovers differ strikingly between sexes. Crossovers cluster toward chromosome ends in males, but are distributed more evenly across chromosomes in females. Suppression of recombination near the centromeres in males causes crossovers to cluster at the ends of long arms in acrocentric chromosomes, and greatly reduces crossing over on short arms. The effect of centromeres on recombination is much weaker in females. Genomic differentiation between G. aculeatus and G. nipponicus is strongly correlated with recombination rate, and patterns of differentiation along chromosomes are strongly influenced by male-specific telomere and centromere effects. We found no evidence for fine-scale correlations between recombination and local gene content in either sex. We discuss hypotheses for the origin of sexual dimorphism in recombination and its consequences for sexually antagonistic selection and sex chromosome evolution

    Geometry of One-Dimensional Wave Propagation

    Get PDF
    We investigate the geometrical features of one-dimensional wave propagation, whose dynamics is described by the (2+1)-dimensional Lorentz group. We find many interesting geometrical ingredients such as spinorlike behavior of wave amplitudes, gauge transformations, Bloch-type equations, and Lorentz-group Berry phases. We also propose an optical experiment to verify these effects.Comment: RevTeX, 16 pages, 6 postscript figure

    Non-minimal Gauge Mediation and Moduli Stabilization

    Get PDF
    In this paper we consider U(1)-gauged Polony'i model with two spurions coupled to a twisted closed string modulus. This offers a consistent setup for metastable SUSY breakdown which allows for moduli stabilization and naturally leads to gauge or hybrid gauge/gravitational mediation mechanism. Due to the presence of the second spurion one can arrange for a solution of the \mu and B_\mu problems in a version of modified Giudice-Masiero mechanism, which works both in the limit of pure gauge mediation and in the mixed regime of hybrid mediation.Comment: 12 pages, Discussion extended to include the effects of the gauge boson exchange. This should be version 2

    Mathematical structure of unit systems

    Get PDF
    We investigate the mathematical structure of unit systems and the relations between them. Looking over the entire set of unit systems, we can find a mathematical structure that is called preorder (or quasi-order). For some pair of unit systems, there exists a relation of preorder such that one unit system is transferable to the other unit system. The transfer (or conversion) is possible only when all of the quantities distinguishable in the latter system are always distinguishable in the former system. By utilizing this structure, we can systematically compare the representations in different unit systems. Especially, the equivalence class of unit systems (EUS) plays an important role because the representations of physical quantities and equations are of the same form in unit systems belonging to an EUS. The dimension of quantities is uniquely defined in each EUS. The EUS's form a partially ordered set. Using these mathematical structures, unit systems and EUS's are systematically classified and organized as a hierarchical tree.Comment: 27 pages, 3 figure

    Suppression of the charge-density-wave state in Sr_14Cu_24O_41 by calcium doping

    Full text link
    The charge response in the spin chain/ladder compound Sr_14-xCa_xCu_24O_41 is characterized by DC resistivity, low-frequency dielectric spectroscopy and optical spectroscopy. We identify a phase transition below which a charge-density wave (CDW) develops in the ladder arrays. Calcium doping suppresses this phase with the transition temperature decreasing from 210 K for x=0 to 10 K for x=9, and the CDW gap from 130 meV down to 3 meV, respectively. This suppression is due to the worsened nesting originating from the increase of the inter-ladder tight-binding hopping integrals, as well as from disorder introduced at the Sr sites. These results altogether speak in favor of two-dimensional superconductivity under pressure.Comment: 4 pages, 4 figures, accepted for publication in PR

    Gravitational Baryogenesis

    Full text link
    We show that a gravitational interaction between the derivative of the Ricci scalar curvature and the baryon-number current dynamically breaks CPT in an expanding universe and, combined with baryon-number-violating interactions, can drive the universe towards an equilibrium baryon asymmetry that is observationally acceptable.Comment: Revtex4, 4 pages, two figure
    corecore