2,693 research outputs found
Nonbipartite Dulmage-Mendelsohn Decomposition for Berge Duality
The Dulmage-Mendelsohn decomposition is a classical canonical decomposition
in matching theory applicable for bipartite graphs, and is famous not only for
its application in the field of matrix computation, but also for providing a
prototypal structure in matroidal optimization theory. The Dulmage-Mendelsohn
decomposition is stated and proved using the two color classes, and therefore
generalizing this decomposition for nonbipartite graphs has been a difficult
task. In this paper, we obtain a new canonical decomposition that is a
generalization of the Dulmage-Mendelsohn decomposition for arbitrary graphs,
using a recently introduced tool in matching theory, the basilica
decomposition. Our result enables us to understand all known canonical
decompositions in a unified way. Furthermore, we apply our result to derive a
new theorem regarding barriers. The duality theorem for the maximum matching
problem is the celebrated Berge formula, in which dual optimizers are known as
barriers. Several results regarding maximal barriers have been derived by known
canonical decompositions, however no characterization has been known for
general graphs. In this paper, we provide a characterization of the family of
maximal barriers in general graphs, in which the known results are developed
and unified
Recommended from our members
Gesture and speech integration: an exploratory study of a man with aphasia
Background: In order to fully comprehend a speaker’s intention in everyday communication, we integrate information from multiple sources including gesture and speech. There are no published studies that have explored the impact of aphasia on iconic co-speech gesture and speech integration.
Aims: To explore the impact of aphasia on co-speech gesture and speech integration in one participant with aphasia (SR) and 20 age-matched control participants.
Methods & Procedures: SR and 20 control participants watched video vignettes of people producing 21 verb phrases in 3 different conditions, verbal only (V), gesture only (G) and verbal gesture combined (VG). Participants were required to select a corresponding picture from one of four alternatives: integration target, a verbal only match, a gesture only match, and an unrelated foil. The probability of choosing the integration target in the VG that goes beyond what is expected from the probabilities of choosing the integration target in V and G was referred to as multi-modal gain(MMG).
Outcomes & Results: SR obtained a significantly lower multi-modal gain score than the control participants (p<0.05). Error analysis indicated that in speech and gesture integration tasks, SR relied on gesture in order to decode the message, whereas the control participants relied on speech in order to decode the message. Further analysis
of the speech only and gesture only tasks indicated SR had intact gesture comprehension but impaired spoken word comprehension.
Conclusions & Implications: The results confirm findings by Records (1994) which reported that impaired verbal comprehension leads to a greater reliance on gesture to
decode messages. Moreover, multi-modal integration of information from speech and iconic gesture can be impaired in aphasia. The findings highlight the need for further exploration of the impact of aphasia on gesture and speech integration
Properties of Nambu-Goldstone Bosons in a Single-Component Bose-Einstein Condensate
We theoretically study the properties of Nambu-Goldstone bosons in an
interacting single-component Bose-Einstein condensate (BEC). We first point out
that the proofs of Goldstone's theorem by Goldstone, et al. [Phys. Rev. {\bf
127} (1962) 965] may be relevant to distinct massless modes of the BEC: whereas
the first proof deals with the poles of the single-particle Green's function
, the second one concerns those of the two-particle Green's function.
Thus, there may be multiple Nambu-Goldstone bosons even in the single-component
BEC with broken U(1) symmetry. The second mode turns out to have an infinite
lifetime in the long-wavelength limit in agreement with the conventional
viewpoint. In contrast, the first mode from , i.e., the Bogoliubov
mode in the weak-coupling regime, is shown to be a "bubbling" mode fluctuating
temporally out of and back into the condensate. The substantial lifetime
originates from an "improper" structure of the self-energy inherent in the BEC,
which has been overlooked so far and will be elucidated here, and removes
various infrared divergences pointed out previously.Comment: 9 pages, 6 gigure
Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle
Peridotitic xenoliths in basaltic andesites from Batan island in the Luzon arc contain silica-rich (broadly dacitic) hydrous melt inclusions that were likely trapped when these rocks were within the upper mantle wedge underlying the arc. These melt inclusions have been previously interpreted to be slab-derived melts. We tested this hypothesis by analyzing the oxygen isotope compositions of these inclusions with an ion microprobe. The melt inclusions from Batan xenoliths have δ 18OVSMOW values of 6.45 ± 0.51‰. These values are consistent with the melts having been in oxygen isotope exchange equilibrium with average mantle peridotite at temperatures of ≥875°C. We suggest the δ 18O values of Batan inclusions, as well as their major and trace element compositions, can be explained if they are low-degree melts (or differentiation products of such melts) of peridotites in the mantle wedge that had previously undergone extensive melt extraction followed by metasomatism by small amounts (several percent or less) of slab-derived components. A model based on the trace element contents of Batan inclusions suggests that this metasomatic agent was an aqueous fluid extracted from subducted basalts and had many characteristics similar to slab-derived components of the sources of arc-related basalts at Batan and elsewhere. Batan inclusions bear similarities to “adakites,” a class of arc-related lava widely considered to be slab-derived melts. Our results suggest the alternative interpretation that at least some adakite-like liquids might be generated from low-degree melting of metasomatized peridotites
Theory of Flux-Flow Resistivity near for s-wave Type-II Superconductors
This paper presents a microscopic calculation of the flux-flow resistivity
for s-wave type-II superconductors with arbitrary impurity
concentrations near the upper critical field . It is found that, as the
mean free path becomes longer, increases gradually from the
dirty-limit result of Thompson [Phys. Rev. B{\bf 1}, 327 (1970)] and Takayama
and Ebisawa [Prog. Theor. Phys. {\bf 44}, 1450 (1970)]. The limiting behaviors
suggest that at low temperatures may change from convex downward
to upward as increases, thus deviating substantially from the linear
dependence predicted by the Bardeen-Stephen theory
[Phys. Rev. {\bf 140}, A1197 (1965)]
Locally-anchored narrative
As for 'Locally-anchored spatial gestures task, version 2', a major goal of this task is to elicit locally-anchored spatial gestures across different cultures. “Locally-anchored spatial gestures” are gestures that are roughly oriented to the actual geographical direction of referents. Rather than set up an interview situation, this task involves recording informal, animated narrative delivered to a native-speaker interlocutor. Locally-anchored gestures produced in such narrative are roughly comparable to those collected in the interview task. The data collected can also be used to investigate a wide range of other topics
Recommended from our members
Iconic gesture and speech integration in younger and older adults
This study investigated the impact of age on iconic gesture and speech integration. The performance of a group of older adults (60–76 years) and a group of younger adults (22–30 years) were compared on a task which required the comprehension of information presented in 3 different conditions: verbal only, gesture only, and verbal and gesture combined. The older adults in the study did not benefit as much from multi-modal input as the younger adults and were more likely to ignore gesture when decoding the multi-modal information
Unconventional Vortices and Phase Transitions in Rapidly Rotating Superfluid ^{3}He
This paper studies vortex-lattice phases of rapidly rotating superfluid ^3He
based on the Ginzburg-Landau free-energy functional. To identify stable phases
in the p-Omega plane (p: pressure; Omega: angular velocity), the functional is
minimized with the Landau-level expansion method using up to 3000 Landau
levels. This system can sustain various exotic vortices by either (i) shifting
vortex cores among different components or (ii) filling in cores with
components not used in the bulk. In addition, the phase near the upper critical
angular velocity Omega_{c2} is neither the A nor B phases, but the polar state
with the smallest superfluid density as already shown by Schopohl. Thus,
multiple phases are anticipated to exist in the p-Omega plane. Six different
phases are found in the present calculation performed over 0.0001 Omega_{c2} <=
Omega <= Omega_{c2}, where Omega_{c2} is of order (1- T/T_c) times 10^{7}
rad/s. It is shown that the double-core vortex experimentally found in the B
phase originates from the conventional hexagonal lattice of the polar state
near Omega_{c2} via (i) a phase composed of interpenetrating polar and
Scharnberg-Klemm sublattices; (ii) the A-phase mixed-twist lattice with polar
cores; (iii) the normal-core lattice found in the isolated-vortex calculation
by Ohmi, Tsuneto, and Fujita; and (iv) the A-phase-core vortex discovered in
another isolated-vortex calculation by Salomaa and Volovik. It is predicted
that the double-core vortex will disappear completely in the experimental p-T
phase diagram to be replaced by the A-phase-core vortex for Omega >~ 10^{3} ~
10^{4} rad/s. C programs to minimize a single-component Ginzburg-Landau
functional are available at {http://phys.sci.hokudai.ac.jp/~kita/index-e.html}.Comment: 13 pages, 9 figure
Exact results on the two-particle Green's function of a Bose-Einstein condensate
Starting from the Dyson-Beliaev and generalized Gross-Pitaevskii equations
with an extra nonlocal potential, we derive an exact expression of the
two-particle Green's function K for an interacting Bose-Einstein condensate in
terms of unambiguously defined self-energies and vertices. The formula can be a
convenient basis for approximate calculations of K. It also tells us that poles
of K are not shared with (i.e. shifted from) those of the single-particle
Green's function, contrary to the conclusion of previous studies.Comment: 5 pages, 2 figures, to appear in Phys. Rev.
- …