5 research outputs found

    Proteomic insight into the primycin fermentation process of Saccharomonospora azurea

    Get PDF
    Saccharomonospora azurea SZMC 14600 is a member of the family Pseudonocardiaceae exclusively used for industrial scale production of primycin a large 36-membered non-polyene macrolide lactone antibiotic belonging to the polyketide class of natural products. Even though maximum antibiotic yield has been achieved by empirically optimized two-step fermentation process, little is known about the molecular components and mechanisms underlying the efficient antibiotic production. In order to identify differentially expressed proteins (DEPs) between the pre- and main-fermentation stages of primycin, comparative 2D-PAGE experiments were performed. In total, 98 DEP spots were reproducibly detected, out of which four spots were excised from gels, and identified through MALDI-TOF/TOF mass spectrometry. Peptide mass fingerprint analysis revealed peptide matches to HicB antitoxin for the HicAB toxin-antitoxin system (EHK86651), to a nucleoside diphosphate kinase regulator ((Ndk; EHK81899) and two other proteins with unknown function (EHK88946 and EHK86777)

    Malignant astrocyte swelling and impaired glutamate clearance drive the expansion of injurious spreading depolarization foci

    Get PDF
    Spreading depolarizations (SDs) indicate injury progression and predict worse clinical outcome in acute brain injury. We demonstrate in rodents that acute brain swelling upon cerebral ischemia impairs astroglial glutamate clearance and increases the tissue area invaded by SD. The cytotoxic extracellular glutamate accumulation (>15 mu M) predisposes an extensive bulk of tissue (4-5 mm(2)) for a yet undescribed simultaneous depolarization (SiD). We confirm in rat brain slices exposed to osmotic stress that SiD is the pathological expansion of prior punctual SD foci (0.5-1 mm(2)), is associated with astrocyte swelling, and triggers oncotic neuron death. The blockade of astrocytic aquaporin-4 channels and Na+/K+/Cl- co-transporters, or volume-regulated anion channels mitigated slice edema, extracellular glutamate accumulation (<10 mu M) and SiD occurrence. Reversal of slice swelling by hyperosmotic mannitol counteracted glutamate accumulation and prevented SiD. In contrast, inhibition of glial metabolism or inhibition of astrocyte glutamate transporters reproduced the SiD phenotype. Finally, we show in the rodent water intoxication model of cytotoxic edema that astrocyte swelling and altered astrocyte calcium waves are central in the evolution of SiD. We discuss our results in the light of evidence for SiD in the human cortex. Our results emphasize the need of preventive osmotherapy in acute brain injury

    Malignant astrocyte swelling and impaired glutamate clearance drive the expansion of injurious spreading depolarization foci

    Get PDF
    Spreading depolarizations (SDs) indicate injury progression and predict worse clinical outcome in acute brain injury. We demonstrate in rodents that acute brain swelling upon cerebral ischemia impairs astroglial glutamate clearance and increases the tissue area invaded by SD. The cytotoxic extracellular glutamate accumulation (>15 mu M) predisposes an extensive bulk of tissue (4-5 mm(2)) for a yet undescribed simultaneous depolarization (SiD). We confirm in rat brain slices exposed to osmotic stress that SiD is the pathological expansion of prior punctual SD foci (0.5-1 mm(2)), is associated with astrocyte swelling, and triggers oncotic neuron death. The blockade of astrocytic aquaporin-4 channels and Na+/K+/Cl- co-transporters, or volume-regulated anion channels mitigated slice edema, extracellular glutamate accumulation (<10 mu M) and SiD occurrence. Reversal of slice swelling by hyperosmotic mannitol counteracted glutamate accumulation and prevented SiD. In contrast, inhibition of glial metabolism or inhibition of astrocyte glutamate transporters reproduced the SiD phenotype. Finally, we show in the rodent water intoxication model of cytotoxic edema that astrocyte swelling and altered astrocyte calcium waves are central in the evolution of SiD. We discuss our results in the light of evidence for SiD in the human cortex. Our results emphasize the need of preventive osmotherapy in acute brain injury

    Chitosan nanoparticles release nimodipine in response to tissue acidosis to attenuate spreading depolarization evoked during forebrain ischemia

    Get PDF
    Stroke is an important cause of mortality and disability. Treatment options are limited, therefore the progress in this regard is urgently needed. Nimodipine, an L-type voltage-gated calcium channel antagonist dilates cerebral arterioles, but its systemic administration may cause potential side effects. We have previously constructed chitosan nanoparticles as drug carriers, which release nimodipine in response to decreasing pH typical of cerebral ischemia. Here we have set out to evaluate this nanomedical approach to deliver nimodipine selectively to acidic ischemic brain tissue.After washing a nanoparticle suspension with or without nimodipine (100 mu M) on the exposed brain surface of anesthetized rats (n = 18), both common carotid arteries were occluded to create forebrain ischemia. Spreading depolarizations (SDs) were elicited by 1M KCl to deepen the ischemic insult. Local field potential, cerebral blood flow (CBF) and tissue pH were recorded from the cerebral cortex. Microglia activation and neuronal survival were evaluated in brain sections by immunocytochemistry.Ischemia-induced tissue acidosis initiated nimodipine release from nanoparticles, confirmed by the significant elevation of baseline CBF (47.8 +/- 23.7 vs. 29.3 +/- 6.96%). Nimodipine shortened the duration of both SD itself (48.07 +/- 23.29 vs. 76.25 +/- 17.2 s), and the associated tissue acidosis (65.46 +/- 20.2 vs. 138.3 +/- 66.07 s), moreover it enhanced the SD-related hyperemia (48.15 +/- 42.04 vs. 17.29 +/- 11.03%). Chitosan nanoparticles did not activate microglia.The data support the concept that tissue acidosis linked to cerebral ischemia can be employed as a trigger for targeted drug delivery. Nimodipine-mediated vasodilation and SD inhibition can be achieved by pH-responsive chitosan nanoparticles applied directly to the brain surface
    corecore