49 research outputs found

    First-line pembrolizumab vs chemotherapy in metastatic non-small-cell lung cancer: KEYNOTE-024 Japan subset

    Get PDF
    This prespecified subanalysis of the global, randomized controlled phase Ill KEYNOTE-024 study of pembrolizumab vs chemotherapy in previously untreated metastatic non-small-cell lung cancer without EGFR/ALK alterations and a programmed death-ligand 1 (PD-L1) tumor proportion score of 50% or greater evaluated clinical outcomes among patients enrolled in Japan. Treatment consisted of pembrolizumab 200 mg every 3 weeks (35 cycles) or platinum-based chemotherapy (four to six cycles). The primary end-point was progression-free survival; secondary end-points included overall survival and safety. Of 305 patients randomized in KEYNOTE-024 overall, 40 patients were enrolled in Japan (all received treatment: pembrolizumab, n = 21; chemotherapy, n = 19). The hazard ratio (HR) for progression-free survival by independent central review (data cut-off date, 10 July 2017) was 0.25 (95% confidence interval [CI], 0.10-0.64; one-sided, nominal P = .001). The HR for overall survival (data cut-off date, 15 February 2019) was 0.39 (95% CI, 0.17-0.91; one-sided, nominal P = .012). Treatment-related adverse events occurred in 21/21 (100%) pembrolizumab-treated and 18/19 (95%) chemotherapy-treated patients; eight patients (38%) and nine patients (47%), respectively, had grade 3-5 events. Immune-mediated adverse events and infusion reactions occurred in 11 patients (52%) and four patients (21%), respectively; four patients (19%) and one patient (5%), respectively, had grade 3-5 events. Consistent with results from KEYNOTE-024 overall, first-line pembrolizumab improved progression-free survival and overall survival vs chemotherapy with manageable safety among Japanese patients with metastatic non-small-cell lung cancer without EGFRIALK alterations and a PD-L1 tumor proportion score of 50% or greater

    First-line pembrolizumab vs chemotherapy in metastatic non-small-cell lung cancer: KEYNOTE-024 Japan subset

    Get PDF
    This prespecified subanalysis of the global, randomized controlled phase III KEYNOTE‐024 study of pembrolizumab vs chemotherapy in previously untreated metastatic non‐small‐cell lung cancer without EGFR/ALK alterations and a programmed death ligand 1 (PD‐L1) tumor proportion score of 50% or higher evaluated clinical outcomes among patients enrolled in Japan. Treatment consisted of pembrolizumab 200 mg every 3 weeks (35 cycles) or platinum‐based chemotherapy (four to six cycles). The primary end‐point was progression‐free survival; secondary end‐points included overall survival and safety. Of 305 patients randomized in KEYNOTE‐024 overall, 40 patients were enrolled in Japan (all received treatment: pembrolizumab, n = 21; chemotherapy, n = 19). Median progression‐free survival was 41.4 (95% confidence interval [CI], 4.2‐42.5) months with pembrolizumab and 4.1 (95% CI, 2.8‐8.3) months with chemotherapy (hazard ratio [HR], 0.27 [95% CI, 0.11‐0.65]; one‐sided, nominal P = .001). Median overall survival was not reached (NR) (95% CI, 22.9‒NR) and 21.5 (95% CI, 5.2‐35.0) months, respectively (HR, 0.39 [95% CI, 0.17‐0.91]; one‐sided, nominal P = .012). Treatment‐related adverse events occurred in 21/21 (100%) pembrolizumab‐treated and 18/19 (95%) chemotherapy‐treated patients; eight patients (38%) and nine patients (47%), respectively, had grade 3‐5 events. Immune‐mediated adverse events and infusion reactions occurred in 11 pembrolizumab‐treated patients (52%) and four chemotherapy‐treated patients (21%), respectively; four patients (19%) and one patient (5%), respectively, had grade 3‐5 events. Consistent with results from KEYNOTE‐024 overall, first‐line pembrolizumab improved progression‐free survival and overall survival vs chemotherapy with manageable safety among Japanese patients with metastatic non‐small‐cell lung cancer without EGFR/ALK alterations and a PD‐L1 tumor proportion score of 50% or higher. The trial is registered with Clinicaltrials.gov: NCT02142738

    Oxygen-evolving photosystem II structures during S1–S2–S3 transitions

    Get PDF
    Photosystem II (PSII) catalyses the oxidation of water through a four-step cycle of Si states (i = 0–4) at the Mn4CaO5 cluster1,2,3, during which an extra oxygen (O6) is incorporated at the S3 state to form a possible dioxygen4,5,6,7. Structural changes of the metal cluster and its environment during the S-state transitions have been studied on the microsecond timescale. Here we use pump-probe serial femtosecond crystallography to reveal the structural dynamics of PSII from nanoseconds to milliseconds after illumination with one flash (1F) or two flashes (2F). YZ, a tyrosine residue that connects the reaction centre P680 and the Mn4CaO5 cluster, showed structural changes on a nanosecond timescale, as did its surrounding amino acid residues and water molecules, reflecting the fast transfer of electrons and protons after flash illumination. Notably, one water molecule emerged in the vicinity of Glu189 of the D1 subunit of PSII (D1-E189), and was bound to the Ca2+ ion on a sub-microsecond timescale after 2F illumination. This water molecule disappeared later with the concomitant increase of O6, suggesting that it is the origin of O6. We also observed concerted movements of water molecules in the O1, O4 and Cl-1 channels and their surrounding amino acid residues to complete the sequence of electron transfer, proton release and substrate water delivery. These results provide crucial insights into the structural dynamics of PSII during S-state transitions as well as O–O bond formation

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Pollinator sex matters in competition and coexistence of co-flowering plants

    No full text
    Abstract Male and female pollinators often exhibit sex-specific preferences for visiting different flowers. Recent studies have shown that these preferences play an important role in shaping the network structure of pollination mutualism, but little is known about how they can mediate plant-plant interactions and coexistence of competing plants. The ecological consequences of sex-specific pollination can be complex. Suppose that a plant is favoured by female pollinators. They produce male pollinators, who may prefer visiting other competing plants and intensify the negative effects of inter-plant competition. Here, we analysed a simple two plant-one pollinator model with the sex structure of the pollinator. We observed that (i) sex-specific pollination can have complex consequences for inter-plant competition and coexistence (e.g. the occurrence of non-trivial alternative stable states in which one plant excludes or coexists with the other depending on the initial conditions), (ii) male and female pollinators have distinct ecological consequences because female pollinators have a demographic impact owing to reproduction, and (iii) plants are likely to coexist when male and female pollinators prefer different plants. These results suggest that sex-specific pollination is crucial for competition and coexistence of co-flowering plants. Future, pollination research should more explicitly consider the sex-specific behaviour of pollinating animals

    Fetal Fibroblast Transplantation via Ablative Fractional Laser Irradiation Reduces Scarring

    No full text
    Scar treatments include fractional laser treatment, cell transplantation, surgery, skin needling, and dermal fillers. Fractional laser treatments are used to reduce scarring and blurring. Cell transplantation is promising, with mature fibroblasts and adipose-derived stem cells being used clinically, while embryonic fibroblasts are used experimentally. Herein, we developed a combination of ablative CO2 (carbon dioxide) fractional laser and cell transplantation for the treatment of scars. Eight-week-old male C57Bl/6 mice were used to create a full-layer skin defect in the back skin and create scars. The scar was then irradiated using a CO2 fractional laser. The cells were then transplanted onto the scar surface and sealed with a film agent. The transplanted cells were GFP-positive murine fetal fibroblasts (FB), fetal fibroblasts with a long-term sphere-forming culture (LS), and fetal skin with a short-term sphere-forming culture (SS). After transplantation, green fluorescent protein (GFP)-positive cells were scattered in the dermal papillary layer and subcutis in all the groups. LS significantly reduced the degree of scarring, which was closest to normal skin. In conclusion, the combination of ablative fractional laser irradiation and fetal fibroblast transplantation allowed us to develop new methods for scar treatment

    Controlled release of pioglitazone from biodegradable hydrogels to modify macrophages phenotype

    No full text
    corecore