244 research outputs found
Rapid and efficient cancer cell killing mediated by high-affinity death receptor homotrimerizing TRAIL variants
The tumour necrosis factor family member TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in a variety of cancer cells through the activation of death receptors 4 (DR4) and 5 (DR5) and is considered a promising anticancer therapeutic agent. As apoptosis seems to occur primarily via only one of the two death receptors in many cancer cells, the introduction of DR selectivity is thought to create more potent TRAIL agonists with superior therapeutic properties. By use of a computer-aided structure-based design followed by rational combination of mutations, we obtained variants that signal exclusively via DR4. Besides an enhanced selectivity, these TRAIL-DR4 agonists show superior affinity to DR4, and a high apoptosis-inducing activity against several TRAIL-sensitive and -resistant cancer cell lines in vitro. Intriguingly, combined treatment of the DR4-selective variant and a DR5-selective TRAIL variant in cancer cell lines signalling by both death receptors leads to a significant increase in activity when compared with wild-type rhTRAIL or each single rhTRAIL variant. Our results suggest that TRAIL induced apoptosis via high-affinity and rapid-selective homotrimerization of each DR represent an important step towards an efficient cancer treatment
Caspase-8 binding to cardiolipin in giant unilamellar vesicles provides a functional docking platform for bid
Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activating platform for caspase-8 at the mitochondrial membrane surface. Destabilisation of this platform alters receptor-mediated apoptosis in diseases such as Barth Syndrome, which is characterised by the presence of immature cardiolipin which does not allow caspase-8 binding. We used a simplified in vitro system that mimics contact sites and/or cardiolipin-enriched microdomains at the outer mitochondrial surface in which the platform consisting of caspase-8, Bid and cardiolipin was reconstituted in giant unilamellar vesicles. We analysed these vesicles by flow cytometry and confirm previous results that demonstrate the requirement for intact mature cardiolipin for caspase-8 activation and Bid binding and cleavage. We also used confocal microscopy to visualise the rupture of the vesicles and their revesiculation at smaller sizes due to alteration of the curvature following caspase-8 and Bid binding. Biophysical approaches, including Laurdan fluorescence and rupture/tension measurements, were used to determine the ability of these three components (cardiolipin, caspase-8 and Bid) to fulfil the minimal requirements for the formation and function of the platform at the mitochondrial membrane. Our results shed light on the active functional role of cardiolipin, bridging the gap between death receptors and mitochondria
Apoptosis induction in Jurkat cells and sCD95 levels in women's sera are related with the risk of developing cervical cancer
<p>Abstract</p> <p>Background</p> <p>Currently, there is clear evidence that apoptosis plays an important role in the development and progression of tumors. One of the best characterized apoptosis triggering systems is the CD95/Fas/APO-1 pathway; previous reports have demonstrated high levels of soluble CD95 (sCD95) in serum of patients with some types of cancer. Cervical cancer is the second most common cancer among women worldwide. As a first step in an attempt to design a minimally invasive test to predict the risk of developing cervical cancer in patients with precancerous lesions, we used a simple assay based on the capacity of human serum to induce apoptosis in Jurkat cells. We evaluated the relationship between sCD95 levels and the ability to induce apoptosis in Jurkat cells in cervical cancer patients and controls.</p> <p>Methods</p> <p>Jurkat cells were exposed to serum from 63 women (20 healthy volunteers, 21 with cervical intraepithelial neoplasia grade I [CIN 1] and 22 with cervical-uterine carcinoma). The apoptotic rate was measured by flow cytometry using Annexin-V-Fluos and Propidium Iodide as markers. Serum levels of sCD95 and soluble CD95 ligand (sCD95L) were measured by ELISA kits.</p> <p>Results</p> <p>We found that serum from almost all healthy women induced apoptosis in Jurkat cells, while only fifty percent of the sera from women with CIN 1 induced cell death in Jurkat cells. Interestingly, only one serum sample from a patient with cervical-uterine cancer was able to induce apoptosis, the rest of the sera protected Jurkat cells from this killing. We were able to demonstrate that elimination of Jurkat cells was mediated by the CD95/Fas/Apo-1 apoptotic pathway. Furthermore, the serum levels of sCD95 measured by ELISA were significantly higher in women with cervical cancer.</p> <p>Conclusion</p> <p>Our results demonstrate that there is a strong correlation between low levels of sCD95 in serum of normal women and higher apoptosis induction in Jurkat cells. We suggest that an analysis of the apoptotic rate induced by serum in Jurkat cells and the levels of sCD95 in serum could be helpful during the prognosis and treatment of women detected with precancerous lesions or cervical cancer.</p
Possible Novel Therapy for Malignant Gliomas with Secretable Trimeric TRAIL
Malignant gliomas are the most common primary brain tumors. Despite intensive clinical investigation and many novel therapeutic approaches, average survival for the patients with malignant gliomas is only about 1 year. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has shown potent and cancer-selective killing activity and drawn considerable attention as a promising therapy for cancers, but concerns over delivery and toxicity have limited progress. We have developed a secretable trimeric TRAIL (stTRAIL) and here evaluated the therapeutic potential of this stTRAIL-based gene therapy in brain tumors. An adenovirus (Ad-stTRAIL) delivering stTRAIL was injected into intra-cranial human glioma tumors established in nude mice and tumor growth monitored using the magnetic resonance imaging (MRI). Ad-stTRAIL gene therapy showed potent tumor suppressor activity with no toxic side effects at therapeutically effective doses. When compared with 1, 3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a conventional therapy for malignant gliomas, Ad-stTRAIL suppressed tumor growth more potently. The combination of Ad-stTRAIL and BCNU significantly increased survival compared to the control mice or mice receiving Ad-stTRAIL alone. Our data indicate that Ad-stTRAIL, either alone or combined with BCNU, has promise as a novel therapy for malignant gliomas
Giant unilamellar vesicles (GUVs) as a new tool for analysis of caspase-8/Bid-FL complex binding to cardiolipin and its functional activity
Cardiolipin (CL) has recently been shown to be both an anchor and an essential activating platform for caspase-8 on mitochondria. These platforms may be at the mitochondrial contact sites in which truncated Bid (tBid) has been demonstrated to be located. A possible role for CL is to anchor caspase-8 at contact sites (between inner and outer membranes), facilitating its self-activation, Bid-full length (FL) cleavage, tBid generation (and Bax/Bak activation and oligomerization), mitochondrial destabilization and apoptosis. We have developed an in vitro system that mimics the mitochondrial membrane contact site platform. This system involves reconstituting caspase-8, Bid-FL and CL complexes in giant unilamellar vesicles (GUVs). We first validated the system by flow cytometry analysis of light-scattering properties and nonyl acridine orange staining of their CL content. Then, we used flow cytometry analysis to detect the binding of active caspase-8 to CL and the subsequent truncation of bound Bid-FL. The tBid generated interacts with CL and induces GUV breakage and partial re-vesiculation at a smaller size. Our findings suggest an active role for mitochondrial membrane lipids, particularly CL, in binding active caspase-8 and providing a docking site for Bid-FL. This phenomenon was previously only poorly documented and substantially underestimated
Individual caspase-10 isoforms play distinct and opposing roles in the initiation of death receptor-mediated tumour cell apoptosis
The cysteine protease caspase-8 is an essential executioner of the death receptor (DR) apoptotic pathway. The physiological function of its homologue caspase-10 remains poorly understood, and the ability of caspase-10 to substitute for caspase-8 in the DR apoptotic pathway is still controversial. Here, we analysed the particular contribution of caspase-10 isoforms to DR-mediated apoptosis in neuroblastoma (NB) cells characterised by their resistance to DR signalling. Silencing of caspase-8 in tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-sensitive NB cells resulted in complete resistance to TRAIL, which could be reverted by overexpression of caspase-10A or -10D. Overexpression experiments in various caspase-8-expressing tumour cells also demonstrated that caspase-10A and -10D isoforms strongly increased TRAIL and FasL sensitivity, whereas caspase-10B or -10G had no effect or were weakly anti-apoptotic. Further investigations revealed that the unique C-terminal end of caspase-10B was responsible for its degradation by the ubiquitin–proteasome pathway and for its lack of pro-apoptotic activity compared with caspase-10A and -10D. These data highlight in several tumour cell types, a differential pro- or anti-apoptotic role for the distinct caspase-10 isoforms in DR signalling, which may be relevant for fine tuning of apoptosis initiation
Caspase-8 activity has an essential role in CD95/Fas-mediated MAPK activation
Stimulation of CD95/Fas/APO-1 results in the induction of both apoptotic and non-apoptotic signaling pathways. The processes regulating these two opposing pathways have not been thoroughly elucidated to date. In this study, using quantitative immunoblots, imaging, and mathematical modeling, we addressed the dynamics of the DED proteins of the death-inducing signaling complex (DISC), procaspase-8, and cellular FLICE inhibitory proteins (c-FLIPs) to the onset of CD95-mediated ERK1/2 and p38 mitogen-activated protein kinase (MAPK) activation. We found that CD95 DISC-induced caspase-8 activity is important for the initiation of ERK1/2 and p38 MAPK activation. The long c-FLIP isoform, c-FLIPL, and the short c-FLIP isoform, c-FLIPR, inhibited MAPK induction by blocking caspase-8 processing at the DISC. Furthermore, we built a mathematical model describing CD95 DISC-mediated MAPK activation and apoptosis. The model quantitatively defined the dynamics of DED proteins, procaspase-8, and c-FLIP, which lead to caspase-8 activation and induction of apoptotic and non-apoptotic signaling pathways. In conclusion, the combination of biochemical analysis with mathematical modeling provides evidence for an important role of caspase-8 in CD95-mediated activation of MAPKs, while c-FLIP exerts a regulatory function in this process
ARG098, a novel anti-human Fas antibody, suppresses synovial hyperplasia and prevents cartilage destruction in a severe combined immunodeficient-HuRAg mouse model
<p>Abstract</p> <p>Background</p> <p>The anti-human Fas/APO-1/CD95 (Fas) mouse/human chimeric monoclonal IgM antibody ARG098 (ARG098) targets the human Fas molecule. The cytotoxic effects of ARG098 on cells isolated from RA patients, on normal cells <it>in vitro</it>, and on RA synovial tissue and cartilage <it>in vivo </it>using implanted rheumatoid tissues in an SCID mouse model (SCID-HuRAg) were investigated to examine the potential of ARG098 as a therapy for RA.</p> <p>Methods</p> <p>ARG098 binding to each cell was analyzed by cytometry. The effects of ARG098 on several cells were assessed by a cell viability assay <it>in vitro</it>. Effects on the RA synovium, lymphocytes, and cartilage were assessed <it>in vivo </it>using the SCID-HuRAg mouse model.</p> <p>Results</p> <p>ARG098 bound to cell surface Fas molecules, and induced apoptosis in Fas-expressing RA synoviocytes and infiltrating lymphocytes in the RA synovium in a dose-dependent manner. However, ARG098 did not affect the cell viability of peripheral blood mononuclear cells of RA patients or normal chondrocytes. ARG098 also induced apoptosis in RA synoviocytes and infiltrating lymphocytes in the RA synovium <it>in vivo</it>. The destruction of cartilage due to synovial invasion was inhibited by ARG098 injection in the modified SCID-HuRAg mouse model.</p> <p>Conclusions</p> <p>ARG098 treatment suppressed RA synovial hyperplasia through the induction of apoptosis and prevented cartilage destruction <it>in vivo</it>. These results suggest that ARG098 might become a new therapy for RA.</p
Preferential Fas-mediated apoptotic execution at G1 phase: the resistance of mitotic cells to the cell death
Apoptosis is induced by various stresses generated from the extracellular and intracellular environments. The fidelity of the cell cycle is monitored by surveillance mechanisms that arrest its further progression if any crucial process has not been completed or damages are sustained, and then the cells with problems undergo apoptosis. Although the molecular mechanisms involved in the regulation of the cell cycle and that of apoptosis have been elucidated, the links between them are not clear, especially that between cell cycle and death receptor-mediated apoptosis. By using the HeLa.S-Fucci (fluorescent ubiquitination-based cell cycle indicator) cells, we investigated the relationship between the cell cycle progression and apoptotic execution. To monitor apoptotic execution during cell cycle progression, we observed the cells after induction of apoptosis with time-lapse fluorescent microscopy. About 70% of Fas-mediated apoptotic cells were present at G1 phase and about 20% of cells died immediately after cytokinesis, whereas more than 60% of etoposide-induced apoptotic cells were at S/G2 phases in random culture of the cells. These results were confirmed by using synchronized culture of the cells. Furthermore, mitotic cells showed the resistance to Fas-mediated apoptosis. In conclusion, these findings suggest that apoptotic execution is dependent on cell cycle phase and Fas-mediated apoptosis preferentially occurs at G1 phase
Selective BRAFV600E Inhibitor PLX4720, Requires TRAIL Assistance to Overcome Oncogenic PIK3CA Resistance
Documented sensitivity of melanoma cells to PLX4720, a selective BRAFV600E inhibitor, is based on the presence of mutant BRAFV600E alone, while wt-BRAF or mutated KRAS result in cell proliferation. In colon cancer appearance of oncogenic alterations is complex , since BRAF, like KRAS mutations, tend to co-exist with those in PIK3CA and mutated PI3K has been shown to interfere with the successful application of MEK inhibitors. When PLX4720 was used to treat colon tumours, results were not encouraging and herein we attempt to understand the cause of this recorded resistance and discover rational therapeutic combinations to resensitize oncogene driven tumours to apoptosis. Treatment of two genetically different BRAFV600E mutant colon cancer cell lines with PLX4720 conferred complete resistance to cell death. Even though p-MAPK/ ERK kinase (MEK) suppression was achieved, TRAIL, an apoptosis inducing agent, was used synergistically in order to achieve cell death by apoptosis in RKOBRAFV600E/PIK3CAH1047 cells. In contrast, for the same level of apoptosis in HT29BRAFV600E/PIK3CAP449T cells, TRAIL was combined with 17-AAG, an Hsp90 inhibitor. For cells where PLX4720 was completely ineffective, 17-AAG was alternatively used to target mutant BRAFV600E. TRAIL dependence on the constitutive activation of BRAFV600E is emphasised through the overexpression of BRAFV600E in the permissive genetic background of colon adenocarcinoma Caco-2 cells. Pharmacological suppression of the PI3K pathway further enhances the synergistic effect between TRAIL and PLX4720 in RKO cells, indicating the presence of PIK3CAMT as the inhibitory factor. Another rational combination includes 17-AAG synergism with TRAIL in a BRAFV600E mutant dependent manner to commit cells to apoptosis, through DR5 and the amplification of the apoptotic pathway. We have successfully utilised combinations of two chemically unrelated BRAFV600E inhibitors in combination with TRAIL in a BRAFV600E mutated background and provided insight for new anti-cancer strategies where the activated PI3KCA mutation oncogene should be suppressed
- …