644 research outputs found

    Papers in Australian linguistics No. 1

    Get PDF

    Utilizing Rapid Prototyping for Architectural Modeling

    Get PDF
    This paper will discuss our approach to, success with and future direction in rapid prototyping for architectural modeling. The premise that this emerging technology has broad and exciting applications in the building design and construction industry will be supported by visual and physical evidence. This evidence will be presented in the form of photographs, video recordings and several models of student projects. Our approach to the future of this technology is discussed without a definitive conclusion, as despite our successes we remain in an exploratory mode regarding software, equipment and industry adoption

    Enhanced shot noise in resonant tunnelling via interacting localised states

    Full text link
    In a variety of mesoscopic systems shot noise is seen to be suppressed in comparison with its Poisson value. In this work we observe a considerable enhancement of shot noise in the case of resonant tunnelling via localised states. We present a model of correlated transport through two localised states which provides both a qualitative and quantitative description of this effect.Comment: 4 pages, 4 figure

    Re-entrant resonant tunneling

    Full text link
    We study the effect of electron-electron interactions on the resonant-tunneling spectroscopy of the localized states in a barrier. Using a simple model of three localized states, we show that, due to the Coulomb interactions, a single state can give rise to two resonant peaks in the conductance as a function of gate voltage, G(Vg). We also demonstrate that an additional higher-order resonance with Vg-position in between these two peaks becomes possibile when interactions are taken into account. The corresponding resonant-tunneling process involves two-electron transitions. We have observed both these effects in GaAs transistor microstructures by studying the time evolution of three adjacent G(Vg) peaks caused by fluctuating occupation of an isolated impurity (modulator). The heights of the two stronger peaks exibit in-phase fluctuations. The phase of fluctuations of the smaller middle peak is opposite. The two stronger peaks have their origin in the same localized state, and the third one corresponds to a co-tunneling process.Comment: 9 pages, REVTeX, 4 figure

    Hepatic Stellate Cells and Hepatocarcinogenesis

    Get PDF
    Hepatic stellate cells (HSCs) are a significant component of the hepatocellular carcinoma (HCC) tumor microenvironment (TME). Activated HSCs transform into myofibroblast-like cells to promote fibrosis in response to liver injury or chronic inflammation, leading to cirrhosis and HCC. The hepatic TME is comprised of cellular components, including activated HSCs, tumor-associated macrophages, endothelial cells, immune cells, and non-cellular components, such as growth factors, proteolytic enzymes and their inhibitors, and other extracellular matrix (ECM) proteins. Interactions between HCC cells and their microenvironment have become topics under active investigation. These interactions within the hepatic TME have the potential to drive carcinogenesis and create challenges in generating effective therapies. Current studies reveal potential mechanisms through which activated HSCs drive hepatocarcinogenesis utilizing matricellular proteins and paracrine crosstalk within the TME. Since activated HSCs are primary secretors of ECM proteins during liver injury and inflammation, they help promote fibrogenesis, infiltrate the HCC stroma, and contribute to HCC development. In this review, we examine several recent studies revealing the roles of HSCs and their clinical implications in the development of fibrosis and cirrhosis within the hepatic TME

    Using the environment to understand non-Markovian open quantum systems

    Get PDF
    Tracing out the environmental degrees of freedom is a necessary procedure when simulating open quantum systems. While being an essential step in deriving a tractable master equation it represents a loss of information. In situations where there is strong interplay between the system and environmental degrees of freedom this loss makes understanding the dynamics challenging. These dynamics, when viewed in isolation, have no time-local description: they are non-Markovian and memory effects induce complex features that are difficult to interpret. To address this problem, we here show how to use system correlations, calculated by any method, to infer any correlation function of a Gaussian environment, so long as the coupling between system and environment is linear. This not only allows reconstruction of the full dynamics of both system and environment, but also opens avenues into studying the effect of a system on its environment. In order to obtain accurate bath dynamics, we exploit a numerically exact approach to simulating the system dynamics, which is based on the construction and contraction of a tensor network that represents the process tensor of this open quantum system. Using this we are able to find any system correlation function exactly. To demonstrate the applicability of our method we show how heat moves between different modes of a bosonic bath when coupled to a two-level system that is subject to an off-resonant drive

    A key role for peroxynitrite-mediated inhibition of cardiac ERG (Kv11.1) K+ channels in carbon monoxide–induced proarrhythmic early afterdepolarizations

    Get PDF
    Exposure to carbon monoxide (CO) causes early afterdepolarization arrhythmias. Previous studies in rats indicated arrhythmias arose due to augmentation of the late Na+ current. The purpose of the present study was to examine the basis of CO-induced arrhythmias in guinea pig myocytes in which action potentials more closely resemble those of human myocytes. Whole-cell current- and voltage-clamp recordings were made from isolated guinea pig myocytes and also from HEK293 cells expressing wild-type or a C723S mutant form of Kv11.1 (ERG). We also monitored formation of peroxynitrite (ONOO-) in HEK293 cells fluorimetrically. CO, applied as the CO releasing molecule, CORM-2, prolonged action potentials and induced early after-depolarizations (EADs) in guinea pig myocytes. In HEK293 cells CO inhibited wild-type but not C723S mutant Kv11.1 K+ currents. Inhibition was prevented by an antioxidant, mitochondrial inhibitors or inhibition of nitric oxide formation. CO also raised ONOO- levels, an effect reversed by the ONOO- scavenger, FeTPPS which also prevented CO inhibition of Kv11.1 currents, and abolished the effects of CO on Kv11.1 tail currents and action potentials in guinea pig myocytes. Our data suggest that CO induces arrhythmias in guinea pig cardiac myocytes via ONOO--mediated inhibition of Kv11.1 K+ channel

    OB GYN Posters - 2019

    Get PDF
    OB GYN Posters - 2019https://scholarlycommons.libraryinfo.bhs.org/research_education/1008/thumbnail.jp
    corecore