18 research outputs found

    Role of Intraspecies Recombination in the Spread of Pathogenicity Islands within the Escherichia coli Species

    Get PDF
    Horizontal gene transfer is a key step in the evolution of bacterial pathogens. Besides phages and plasmids, pathogenicity islands (PAIs) are subjected to horizontal transfer. The transfer mechanisms of PAIs within a certain bacterial species or between different species are still not well understood. This study is focused on the High-Pathogenicity Island (HPI), which is a PAI widely spread among extraintestinal pathogenic Escherichia coli and serves as a model for horizontal transfer of PAIs in general. We applied a phylogenetic approach using multilocus sequence typing on HPI-positive and -negative natural E. coli isolates representative of the species diversity to infer the mechanism of horizontal HPI transfer within the E. coli species. In each strain, the partial nucleotide sequences of 6 HPI–encoded genes and 6 housekeeping genes of the genomic backbone, as well as DNA fragments immediately upstream and downstream of the HPI were compared. This revealed that the HPI is not solely vertically transmitted, but that recombination of large DNA fragments beyond the HPI plays a major role in the spread of the HPI within E. coli species. In support of the results of the phylogenetic analyses, we experimentally demonstrated that HPI can be transferred between different E. coli strains by F-plasmid mediated mobilization. Sequencing of the chromosomal DNA regions immediately upstream and downstream of the HPI in the recipient strain indicated that the HPI was transferred and integrated together with HPI–flanking DNA regions of the donor strain. The results of this study demonstrate for the first time that conjugative transfer and homologous DNA recombination play a major role in horizontal transfer of a pathogenicity island within the species E. coli

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    A Multiepitope Subunit Vaccine Conveys Protection against Extraintestinal Pathogenic Escherichia coli in Mice▿ †

    No full text
    Infections due to extraintestinal pathogenic Escherichia coli (ExPEC) are common in humans and animals and include urinary tract infections (from uropathogenic E. coli [UPEC]), septicemia, and wound infections. These infections result in significant morbidity and mortality and in high health care costs. In view of the increasing number of ExPEC infections and the ever-growing antibiotic resistance capability of ExPEC isolates, preventive measures such as an effective vaccine against ExPEC are desirable. An ExPEC vaccine may be cost-effective for select patient groups. Previous vaccine candidates consisted of single target proteins or whole ExPEC cells. Here we describe a subunit vaccine against ExPEC which is based on immunodominant epitopes of the virulence-associated ExPEC proteins FyuA, IroN, ChuA, IreA, Iha, and Usp. Using a novel approach of computer-aided design, two completely artificial genes were created, both encoding eight peptide domains derived from these ExPEC proteins. The recombinant expression of these two genes resulted in a protein vaccine directed against ExPEC but not against commensal E. coli of the gut flora. In mice, the vaccine was highly immunogenic, eliciting both strong humoral and cellular immune responses. Nasal application resulted in high secretory immunoglobulin A (sIgA) production, which was detectable on the mucosal surface of the urogenital tract. Finally, it conveyed protection, as shown by a significant reduction of bacterial load in a mouse model of ExPEC peritonitis. This study provides evidence that a novel vaccine design encompassing distinct epitopes of virulence-associated ExPEC proteins may represent a means for providing a protective and pathogen-specific vaccine

    Limited clinical relevance of imaging techniques in the follow-up of patients with advanced chronic lymphocytic leukemia: results of a meta-analysis

    No full text
    The clinical value of imaging is well established for the follow-up of many lymphoid malignancies but not for chronic lymphocytic leukemia (CLL). A meta-analysis was performed with the dataset of 3 German CLL Study Group phase 3 trials (CLL4, CLL5, and CLL8) that included 1372 patients receiving first-line therapy for CLL. Response as well as progression during follow-up was reassessed according to the National Cancer Institute Working Group1996 criteria. A total of 481 events were counted as progressive disease during treatment or follow-up. Of these, 372 progressions (77%) were detected by clinical symptoms or blood counts. Computed tomography (CT) scans or ultrasound were relevant in 44 and 29 cases (9% and 6%), respectively. The decision for relapse treatment was determined by CT scan or ultrasound results in only 2 of 176 patients (1%). CT scan results had an impact on the prognosis of patients in complete remission only after the administration of conventional chemotherapy but not after chemoimmunotherapy. In conclusion, physical examination and blood count remain the methods of choice for staging and clinical follow-up of patients with CLL as recommended by the International Workshop on Chronic Lymphocytic Leukemia 2008 guidelines. These trials are registered at http://www.isrctn.org as ISRCTN 75653261 and ISRCTN 36294212 and at http://www.clinicaltrials.gov as NCT00281918
    corecore