26 research outputs found
Vascular structure of the earliest shark teeth
Here we use synchrotron tomography to characterise dental vasculature in the oldest known tooth-bearing sharks, Leonodus carlsi Mader, 1986 and Celtiberina maderi Wang, 1993. Three dimensional reconstruction of the vascular system and microstructure of both taxa revealed a complex and dense network of canals, including horizontal, ascending and secondary bifurcated canals, as well as histological features consistent with an osteodont histotype. However, L. carlsi and C. maderi also exhibit significant morphological differences, showing Leonodus a typical diplodont tooth morphology with a linguo-labially elongated base, that contrast with Celtiberina’s teeth that show a single conical cusp curved lingually with a week developed flat base mesio-distally extended, perhaps reflecting distant relationship. These data are compatible with a pre-Devonian diversification of the two main tooth types traditionally recognised in Palaeozoic sharks (i.e., “cladodont” vs “diplodont”). Finally, our data demonstrate that existing dental classification schemes based on styles of vascularisation are over-simplified, especially when Palaeozoic taxa are considered
Aberrations of Genomic Imprinting in Glioblastoma Formation
In human glioblastoma (GBM), the presence of a small population of cells with stem
cell characteristics, the glioma stem cells (GSCs), has been described. These cells
have GBM potential and are responsible for the origin of the tumors. However, whether
GSCs originate from normal neural stem cells (NSCs) as a consequence of genetic
and epigenetic changes and/or dedifferentiation from somatic cells remains to be
investigated. Genomic imprinting is an epigenetic marking process that causes genes
to be expressed depending on their parental origin. The dysregulation of the imprinting
pattern or the loss of genomic imprinting (LOI) have been described in different tumors
including GBM, being one of the earliest and most common events that occurs in human
cancers. Here we have gathered the current knowledge of the role of imprinted genes
in normal NSCs function and how the imprinting process is altered in human GBM.
We also review the changes at particular imprinted loci that might be involved in the
development of the tumor. Understanding the mechanistic similarities in the regulation
of genomic imprinting between normal NSCs and GBM cells will be helpful to identify
molecular players that might be involved in the development of human GBM
The rates of adult neurogenesis and oligodendrogenesis are linked to cell cycle regulation through p27-dependent gene repression of SOX2
Cell differentiation involves profound changes in global gene expression that often has to occur in coordination with cell cycle exit. Because cyclin-dependent kinase inhibitor p27 reportedly regulates proliferation of neural progenitor cells in the subependymal neurogenic niche of the adult mouse brain, but can also have effects on gene expression, we decided to molecularly analyze its role in adult neurogenesis and oligodendrogenesis. At the cell level, we show that p27 restricts residual cyclin-dependent kinase activity after mitogen withdrawal to antagonize cycling, but it is not essential for cell cycle exit. By integrating genome-wide gene expression and chromatin accessibility data, we find that p27 is coincidentally necessary to repress many genes involved in the transit from multipotentiality to differentiation, including those coding for neural progenitor transcription factors SOX2, OLIG2 and ASCL1. Our data reveal both a direct association of p27 with regulatory sequences in the three genes and an additional hierarchical relationship where p27 repression of Sox2 leads to reduced levels of its downstream targets Olig2 and Ascl1. In vivo, p27 is also required for the regulation of the proper level of SOX2 necessary for neuroblasts and oligodendroglial progenitor cells to timely exit cell cycle in a lineage-dependent manne
Cholinergic Senescence in the Ts65Dn Mouse Model for Down Syndrome
Down syndrome (DS) induces a variable phenotype including intellectual disabilities and early development of Alzheimer's disease (AD). Moreover, individuals with DS display accelerated aging that affects diverse organs, among them the brain. The Ts65Dn mouse is the most widely used model to study DS. Progressive loss of cholinergic neurons is one of the hallmarks of AD present in DS and in the Ts65Dn model. In this study, we quantify the number of cholinergic neurons in control and Ts65Dn mice, observing a general reduction in their number with age but in particular, a greater loss in old Ts65Dn mice. Increased expression of the m1 muscarinic receptor in the hippocampus counteracts this loss. Cholinergic neurons in the Ts65Dn mice display overexpression of the early expression gene c-fos and an increase in the expression of β-galactosidase, a marker of senescence. A possible mechanism for senescence induction could be phosphorylation of the transcription factor FOXO1 and its retention in the cytoplasm, which we are able to confirm in the Ts65Dn model. In our study, using Ts65Dn mice, we observe increased cholinergic activity, which induces a process of early senescence that culminates in the loss of these neuron
Cyclin-dependent kinase 4 reguluates adult neural stem cell proliferation and differentiation in response to insulin.
Insulin is one of the standard components used to culture primary neurospheres. Although it stim- ulates growth of different types of cells, the effects of insulin on adult neural stem cells (NSCs) have not been well characterized. Here, we reveal that insulin stimulates proliferation, but not sur- vival or self-renewal, of adult NSCs. This effect is mediated by insulin receptor substrate 2 (IRS2) and subsequent activation of the protein kinase B (or Akt), leading to increased activity of the G1- phase cyclin-dependent kinase 4 (Cdk4) and cell cycle progression. Neurospheres isolated from Irs2-deficient mice are reduced in size and fail to expand in culture and this impaired proliferation is rescued by introduction of a constitutively active Cdk4 (Cdk4R24C/R24C). More interestingly, activation of the IRS2/Akt/Cdk4 signaling pathway by insulin is also necessary for the generation in vitro of neurons and oligodendrocytes from NSCs. Furthermore, the IRS2/Cdk4 pathway is also required for neuritogenesis, an aspect of neuronal maturation that has not been previously linked to regulation of the cell cycle. Differentiation of NSCs usually follows exit from the cell cycle due to increased levels of CDK-inhibitors which prevent activation of CDKs. In contrast, our data indicate that IRS2-mediated Cdk4 activity in response to a mitogen such as insulin promotes terminal differ- entiation of adult NSCs