368 research outputs found
Date Rape: The Intractability of Hermeneutical Injustice
Social epistemologists use the term hermeneutical injustice to refer to a form of epistemic injustice in which a structural prejudice in the economy of collective interpretive resources results in a person’s inability to understand his/her/their own social experience. This essay argues that the phenomenon of unacknowledged date rapes, that is, when a person experiences sexual assault yet does not conceptualize him/her/their self as a rape victim, should be regarded as a form of hermeneutical injustice. The fact that the concept of date rape has been widely used for at least three
decades indicates the intractability of hermeneutical injustices of this sort and the challenges with its overcoming
LSD Acutely Impairs Fear Recognition and Enhances Emotional Empathy and Sociality
Lysergic acid diethylamide (LSD) is used recreationally and has been evaluated as an adjunct to psychotherapy to treat anxiety in patients with life-threatening illness. LSD is well-known to induce perceptual alterations, but unknown is whether LSD alters emotional processing in ways that can support psychotherapy. We investigated the acute effects of LSD on emotional processing using the Face Emotion Recognition Task (FERT) and Multifaceted Empathy Test (MET). The effects of LSD on social behavior were tested using the Social Value Orientation (SVO) test. Two similar placebo-controlled, double-blind, random-order, crossover studies were conducted using 100 μg LSD in 24 subjects and 200 μg LSD in 16 subjects. All of the subjects were healthy and mostly hallucinogen-naive 25- to 65-year-old volunteers (20 men, 20 women). LSD produced feelings of happiness, trust, closeness to others, enhanced explicit and implicit emotional empathy on the MET, and impaired the recognition of sad and fearful faces on the FERT. LSD enhanced the participants' desire to be with other people and increased their prosocial behavior on the SVO test. These effects of LSD on emotion processing and sociality may be useful for LSD-assisted psychotherapy
Recommended from our members
A practitioner's guide to Bayesian estimation of discrete choice dynamic programming models
This paper provides a step-by-step guide to estimating infinite horizon discrete choice dynamic programming (DDP) models using a new Bayesian estimation algorithm (Imai et al., Econometrica 77:1865–1899, 2009a) (IJC). In the conventional nested fixed point algorithm, most of the information obtained in the past iterations remains unused in the current iteration. In contrast, the IJC algorithm extensively uses the computational results obtained from the past iterations to help solve the DDP model at the current iterated parameter values. Consequently, it has the potential to significantly alleviate the computational burden of estimating DDP models. To illustrate this new estimation method, we use a simple dynamic store choice model where stores offer “frequent-buyer” type rewards programs. Our Monte Carlo results demonstrate that the IJC method is able to recover the true parameter values of this model quite precisely. We also show that the IJC method could reduce the estimation time significantly when estimating DDP models with unobserved heterogeneity, especially when the discount factor is close to 1
A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry
We present here a review of the fundamental topics of Hartree-Fock theory in
Quantum Chemistry. From the molecular Hamiltonian, using and discussing the
Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock
equations for the electronic problem. Special emphasis is placed in the most
relevant mathematical aspects of the theoretical derivation of the final
equations, as well as in the results regarding the existence and uniqueness of
their solutions. All Hartree-Fock versions with different spin restrictions are
systematically extracted from the general case, thus providing a unifying
framework. Then, the discretization of the one-electron orbitals space is
reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition
of the basic underlying concepts related to the construction and selection of
Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we
close the review with a section in which the most relevant modern developments
(specially those related to the design of linear-scaling methods) are commented
and linked to the issues discussed. The whole work is intentionally
introductory and rather self-contained, so that it may be useful for non
experts that aim to use quantum chemical methods in interdisciplinary
applications. Moreover, much material that is found scattered in the literature
has been put together here to facilitate comprehension and to serve as a handy
reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and
subeqn package
[(18)F] fluoromisonidazole and [(18)F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study
BACKGROUND: Experimental and clinical evidence suggest that hypoxia in solid tumours reduces their sensitivity to conventional treatment modalities modulating response to ionizing radiation or chemotherapeutic agents. The aim of the present study was to show the feasibility of determining radiotherapeutically relevant hypoxia and early tumour response by ([(18)F] Fluoromisonidazole (FMISO) and [(18)F]-2-fluoro-2'-deoxyglucose (FDG) PET. METHODS: Eight patients with non-small-cell lung cancer underwent PET scans. Tumour tissue oxygenation was measured with FMISO PET, whereas tumour glucose metabolism was measured with FDG PET. All PET studies were carried out with an ECAT EXACT 922/47(® )scanner with an axial field of view of 16.2 cm. FMISO PET consisted of one static scan of the relevant region, performed 180 min after intravenous administration of the tracer. The acquisition and reconstruction parameters were as follows: 30 min emission scanning and 4 min transmission scanning with 68-Ge/68-Ga rod sources. The patients were treated with chemotherapy, consisting of 2 cycles of gemcitabine (1200 mg/m(2)) and vinorelbine (30 mg/m(2)) followed by concurrent radio- (2.0 Gy/d; total dose 66.0 Gy) and chemotherapy with gemcitabine (300–500 mg/m(2)) every two weeks. FMISO PET and FDG PET were performed in all patients 3 days before and 14 days after finishing chemotherapy. RESULTS: FMISO PET allowed for the qualitative and quantitative definition of hypoxic sub-areas which may correspond to a localization of local recurrences. In addition, changes in FMISO and FDG PET measure the early response to therapy, and in this way, may predict freedom from disease, as well as overall survival. CONCLUSION: These preliminary results warrant validation in larger trials. If confirmed, several novel treatment strategies may be considered, including the early use of PET to evaluate the effectiveness of the selected therapy
DNA-PK-Dependent RPA2 Hyperphosphorylation Facilitates DNA Repair and Suppresses Sister Chromatid Exchange
Hyperphosphorylation of RPA2 at serine 4 and serine 8 (S4, S8) has been used as a marker for activation of the DNA damage response. What types of DNA lesions cause RPA2 hyperphosphorylation, which kinase(s) are responsible for them, and what is the biological outcome of these phosphorylations, however, have not been fully investigated. In this study we demonstrate that RPA2 hyperphosphorylation occurs primarily in response to genotoxic stresses that cause high levels of DNA double-strand breaks (DSBs) and that the DNA-dependent protein kinase complex (DNA-PK) is responsible for the modifications in vivo. Alteration of S4, S8 of RPA2 to alanines, which prevent phosphorylations at these sites, caused increased mitotic entry with concomitant increases in RAD51 foci and homologous recombination. Taken together, our results demonstrate that RPA2 hyperphosphorylation by DNA-PK in response to DSBs blocks unscheduled homologous recombination and delays mitotic entry. This pathway thus permits cells to repair DNA damage properly and increase cell viability
Intraventricular dyssynchrony in light chain amyloidosis: a new mechanism of systolic dysfunction assessed by 3-dimensional echocardiography
<p>Abstract</p> <p>Background</p> <p>Light chain amyloidosis (AL) is a rare but often fatal disease due to intractable heart failure. Amyloid deposition leads to diastolic dysfunction and often preserved ejection fraction. We hypothesize that AL is associated with regional systolic dyssynchrony. The aim is to compare left ventricular (LV) regional synchrony in AL subjects versus healthy controls using 16-segment dyssynchrony index measured from 3-dimension-al (3D) echocardiography.</p> <p>Methods</p> <p>Cardiac 3D echocardiography full volumes were acquired in 10 biopsy-proven AL subjects (60 ± 3 years, 5 females) and 10 healthy controls (52 ± 1 years, 5 females). The LV was subdivided into 16 segments and the time from end-diastole to the minimal systolic volume for each of the 16 segments was expressed as a percent of the cycle length. The standard deviations of these times provided a 16-segment dyssynchrony index (16-SD%). 16-SD% was compared between healthy and AL subjects.</p> <p>Results</p> <p>Left ventricular ejection fraction was comparable (control vs. AL: 62.4 ± 0.6 vs. 58.6 ± 2.8%, p = NS). 16-SD% was significantly higher in AL versus healthy subjects (5.93 ± 4.4 vs. 1.67 ± 0.87%, p = 0.003). 16-SD% correlated with left ventricular mass index (R 0.45, p = 0.04) but not to left ventricular ejection fraction.</p> <p>Conclusion</p> <p>Light chain amyloidosis is associated with left ventricular regional systolic dyssynchrony. Regional dyssynchrony may be an unrecognized mechanism of heart failure in AL subjects.</p
HIV Reservoirs and Immune Surveillance Evasion Cause the Failure of Structured Treatment Interruptions: A Computational Study
Continuous antiretroviral therapy is currently the most effective way to treat HIV infection. Unstructured interruptions are quite common due to side effects and toxicity, among others, and cannot be prevented. Several attempts to structure these interruptions failed due to an increased morbidity compared to continuous treatment. The cause of this failure is poorly understood and often attributed to drug resistance. Here we show that structured treatment interruptions would fail regardless of the emergence of drug resistance. Our computational model of the HIV infection dynamics in lymphoid tissue inside lymph nodes, demonstrates that HIV reservoirs and evasion from immune surveillance themselves are sufficient to cause the failure of structured interruptions. We validate our model with data from a clinical trial and show that it is possible to optimize the schedule of interruptions to perform as well as the continuous treatment in the absence of drug resistance. Our methodology enables studying the problem of treatment optimization without having impact on human beings. We anticipate that it is feasible to steer new clinical trials using computational models
- …