4 research outputs found

    Copolymer based multifunctional conducting polymer film for fluorescence sensing of glucose.

    No full text
    A simple, rapid and effective fluorescence sensing platform has been fabricated using a fluorescent conducting polymer surface. For this purpose, a rhodamine based electroactive monomer (RDC) and a functional group containing monomer (SNS) have been copolymerized to develop a conducting polymer based sensor platform having a fluorescence and enzyme-binding surface on ITO electrode. The proposed fluorescence sensing mechanism for detection of glucose is related to the consumption of dissolved oxygen at the double layer of the electrode which is fluorescence quenching agent by glucose-GOx reaction. Concentration of glucose was investigated quantitatively from 0.05 to 1 mM via fluorescence signal measurement. This novel approach could be adapted for the production of various rapid and effective fluorescence sensing platforms for glucose

    electrochemical sensing and fluorescence imaging of cells

    No full text
    We report here the electrochemical co-polymerization of two functional monomers, one containing fluorescent rhodamine dye (RF) and the other monomer having amine groups (RD), onto electroactive Indium Tin Oxide (ITO) glass. After one step preparation of these surfaces, a three peptide called ArginylGlysylAspartic acid (RGD) was immobilized via EDC chemistry by using amine groups (P(RF-co-RD)/RGD) of the co-polymer, for further use in various bio-applications such as cell adhesion and imaging as well as electrochemical cell sensing. The resultant RGD bound and also fluorescent platforms were utilized as targeted adhesion materials towards integrin avb3 receptor positive (U87-MG) cells and the selectivity was checked by using HaCaT cells as a control. Finally, electrochemical measurements were carried out to characterize step by step surface modification and detection of cell attachment. As a result, P(RF-co-RD)/RGD is a promising material for multi-purpose uses, such as fluorescence imaging without the need for an additional dye for cell visualization and as a targeted adhesion and electrochemical cell sensing platform
    corecore