63 research outputs found
Recommended from our members
The effect of primary organic particles on emergency hospital admissions among the elderly in 3 US cities
Background: Fine particle (PM2.5) pollution related to combustion sources has been linked to a variety of adverse health outcomes. Although poorly understood, it is possible that organic carbon (OC) species, particularly those from combustion-related sources, may be partially responsible for the observed toxicity of PM2.5. The toxicity of the OC species may be related to their chemical structures; however, few studies have examined the association of OC species with health impacts. Methods: We categorized 58 primary organic compounds by their chemical properties into 5 groups: n-alkanes, hopanes, cyclohexanes, PAHs and isoalkanes. We examined their impacts on the rate of daily emergency hospital admissions among Medicare recipients in Atlanta, GA and Birmingham, AL (2006â2009), and Dallas, TX (2006â2007). We analyzed data in two stages; we applied a case-crossover analysis to simultaneously estimate effects of individual OC species on cause-specific hospital admissions. In the second stage we estimated the OC chemical group-specific effects, using a multivariate weighted regression. Results: Exposures to cyclohexanes of six days and longer were significantly and consistently associated with increased rate of hospital admissions for CVD (3.40%, 95%CI = (0.64, 6.24%) for 7-d exposure). Similar increases were found for hospitalizations for ischemic heart disease and myocardial infarction. For respiratory related hospital admissions, associations with OC groups were less consistent, although exposure to iso-/anteiso-alkanes was associated with increased respiratory-related hospitalizations. Conclusions: Results suggest that week-long exposures to traffic-related, primary organic species are associated with increased rate of total and cause-specific CVD emergency hospital admissions. Associations were significant for cyclohexanes, but not hopanes, suggesting that chemical properties likely play an important role in primary OC toxicity
Arabidopsis Sec1/Munc18 protein SEC11 is a competitive and dynamic modulator of SNARE binding and SYP121-dependent vesicle traffic
The Arabidopsis thaliana Qa-SNARE SYP121 (=SYR1/PEN1) drives vesicle traffic at the plasma membrane of cells throughout the vegetative plant. It facilitates responses to drought, to the water stress hormone abscisic acid, and to pathogen attack, and it is essential for recovery from so-called programmed stomatal closure. How SYP121-mediated traffic is regulated is largely unknown, although it is thought to depend on formation of a fusion-competent SNARE core complex with the cognate partners VAMP721 and SNAP33. Like SYP121, the Arabidopsis Sec1/Munc18 protein SEC11 (=KEULE) is expressed throughout the vegetative plant. We find that SEC11 binds directly with SYP121 both in vitro and in vivo to affect secretory traffic. Binding occurs through two distinct modes, one requiring only SEC11 and SYP121 and the second dependent on assembly of a complex with VAMP721 and SNAP33. SEC11 competes dynamically for SYP121 binding with SNAP33 and VAMP721, and this competition is predicated by SEC11 association with the N terminus of SYP121. These and additional data are consistent with a model in which SYP121-mediated vesicle fusion is regulated by an unusual âhandshakingâ mechanism of concerted SEC11 debinding and rebinding. They also implicate one or more factors that alter or disrupt SEC11 association with the SYP121 N terminus as an early step initiating SNARE complex formation
Recommended from our members
Exposure measurement error in PM2.5 health effects studies: A pooled analysis of eight personal exposure validation studies
Background: Exposure measurement error is a concern in long-term PM2.5 health studies using ambient concentrations as exposures. We assessed error magnitude by estimating calibration coefficients as the association between personal PM2.5 exposures from validation studies and typically available surrogate exposures. Methods: Daily personal and ambient PM2.5, and when available sulfate, measurements were compiled from nine cities, over 2 to 12 days. True exposure was defined as personal exposure to PM2.5 of ambient origin. Since PM2.5 of ambient origin could only be determined for five cities, personal exposure to total PM2.5 was also considered. Surrogate exposures were estimated as ambient PM2.5 at the nearest monitor or predicted outside subjectsâ homes. We estimated calibration coefficients by regressing true on surrogate exposures in random effects models. Results: When monthly-averaged personal PM2.5 of ambient origin was used as the true exposure, calibration coefficients equaled 0.31 (95% CI:0.14, 0.47) for nearest monitor and 0.54 (95% CI:0.42, 0.65) for outdoor home predictions. Between-city heterogeneity was not found for outdoor home PM2.5 for either true exposure. Heterogeneity was significant for nearest monitor PM2.5, for both true exposures, but not after adjusting for city-average motor vehicle number for total personal PM2.5. Conclusions: Calibration coefficients were <1, consistent with previously reported chronic health risks using nearest monitor exposures being under-estimated when ambient concentrations are the exposure of interest. Calibration coefficients were closer to 1 for outdoor home predictions, likely reflecting less spatial error. Further research is needed to determine how our findings can be incorporated in future health studies
Mid-21st Century Ozone Air Quality and Health Burden in China Under Emissions Scenarios and Climate Change
Despite modest emissions reductions of air pollutants in recent years, China still suffers from poor air quality, and the outlook for future air quality in China is uncertain. We explore the impact of two disparate 2050 emissions scenarios relative to 2015 in the context of a changing climate with the Geophysical Fluid Dynamics Laboratory Atmospheric Model version 3 (GFDL-AM3) chemistry-climate model. We impose the same near-term climate change for both emission scenarios by setting global sea surface temperature (SST) and sea ice cover (SIC) to the average over 20102019 and 20462055, respectively, from a three-member ensemble of GFDL coupled climate model simulations under the RCP8.5 (Representative Concentration Pathway) scenario. By the 2050s, annual mean surface ozone increases throughout China by up to 8 ppbv from climate change alone (estimated by holding air pollutants at 2015 levels while setting SIC and SST to 2050 conditions in the model) and by 812 ppbv in a scenario in which emissions of ozone precursors nitrogen oxides (NO (sub x) ) and anthropogenic volatile organic compounds (VOCs) increase by ~10%. In a scenario in which NO (sub x) and anthropogenic VOC emissions decline by 60%, annual mean surface ozone over China decreases by 1620 ppbv in the 2050s relative to the 2010s. The ozone increase from climate change alone results in an additional 62 000 premature deaths in China as compared to 330 000 fewer premature deaths by the 2050s under a strong emissions mitigation scenario. In springtime over Southwestern China in the 2050s, the model projects 912 ppbv enhancements to surface ozone from the stratosphere (diagnosed with a model tracer) and from international anthropogenic emissions (diagnosed by differencing AM3 simulations with the same emissions within China but higher versus lower emissions in the rest of the world). Our findings highlight the effectiveness of emissions controls in reducing the health burden in China due to air pollution, and also the potential for climate change and rising global emissions to offset, at least partially, some of the ozone decreases attained with regional emission reductions in China
The association of long-term exposure to PM2.5 on all-cause mortality in the Nursesâ Health Study and the impact of measurement-error correction
Long-term exposure to particulate matter less than 2.5 ÎŒm in diameter (PM2.5) has been consistently associated with risk of all-cause mortality. The methods used to assess exposure, such as area averages, nearest monitor values, land use regressions, and spatio-temporal models in these studies are subject to measurement error. However, to date, no study has attempted to incorporate adjustment for measurement error into a long-term study of the effects of air pollution on mortality. We followed 108,767 members of the Nursesâ Health Study (NHS) 2000â2006 and identified all deaths. Biennial mailed questionnaires provided a detailed residential address history and updated information on potential confounders. Time-varying average PM2.5 in the previous 12-months was assigned based on residential address and was predicted from either spatio-temporal prediction models or as concentrations measured at the nearest USEPA monitor. Information on the relationships of personal exposure to PM2.5 of ambient origin with spatio-temporal predicted and nearest monitor PM2.5 was available from five previous validation studies. Time-varying Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95 percent confidence intervals (95%CI) for each 10 ÎŒg/m3 increase in PM2.5. Risk-set regression calibration was used to adjust estimates for measurement error. Increasing exposure to PM2.5 was associated with an increased risk of mortality, and results were similar regardless of the method chosen for exposure assessment. Specifically, the multivariable adjusted HRs for each 10 ÎŒg/m3 increase in 12-month average PM2.5 from spatio-temporal prediction models were 1.13 (95%CI:1.05, 1.22) and 1.12 (95%CI:1.05, 1.21) for concentrations at the nearest EPA monitoring location. Adjustment for measurement error increased the magnitude of the HRs 4-10% and led to wider CIs (HRâ=â1.18; 95%CI: 1.02, 1.36 for each 10 ÎŒg/m3 increase in PM2.5 from the spatio-temporal models and HRâ=â1.22; 95%CI: 1.02, 1.45 from the nearest monitor estimates). These findings support the large body of literature on the adverse effects of PM2.5, and suggest that adjustment for measurement error be considered in future studies where possible.https://doi.org/10.1186/s12940-015-0027-
Air pollution and decreased bone mineral density among Women's Health Initiative participants
Background: Osteoporosis heavily affects postmenopausal women and is influenced by environmental exposures. Determining the impact of criteria air pollutants and their mixtures on bone mineral density (BMD) in postmenopausal women is an urgent priority. Methods: We conducted a prospective observational study using data from the ethnically diverse Women's Health Initiative Study (WHI) (enrollment, September 1994âDecember 1998; data analysis, January 2020 to August 2022). We used log-normal, ordinary kriging to estimate daily mean concentrations of PM10, NO, NO2, and SO2 at participants' geocoded addresses (1-, 3-, and 5-year averages before BMD assessments). We measured whole-body, total hip, femoral neck, and lumbar spine BMD at enrollment and follow-up (Y1, Y3, Y6) via dual-energy X-ray absorptiometry. We estimated associations using multivariable linear and linear mixed-effects models and mixture effects using Bayesian kernel machine regression (BKMR) models. Findings: In cross-sectional and longitudinal analyses, mean PM10, NO, NO2, and SO2 averaged over 1, 3, and 5 years before the visit were negatively associated with whole-body, total hip, femoral neck, and lumbar spine BMD. For example, lumbar spine BMD decreased 0.026 (95% CI: 0.016, 0.036) g/cm2/year per a 10% increase in 3-year mean NO2 concentration. BKMR suggested that nitrogen oxides exposure was inversely associated with whole-body and lumbar spine BMD. Interpretation: In this cohort study, higher levels of air pollutants were associated with bone damage, particularly on lumbar spine, among postmenopausal women. These findings highlight nitrogen oxides exposure as a leading contributor to bone loss in postmenopausal women, expanding previous findings of air pollution-related bone damage. Funding: US National Institutes of Health
CHC22 clathrin mediates traffic from early secretory compartments for human GLUT4 pathway biogenesis
Post-prandial blood glucose is cleared by Glucose Transporter 4 (GLUT4) released from an intracellular GLUT4 storage compartment (GSC) to the surface of muscle and adipose tissue in response to insulin. Here we map the biosynthetic pathway for human GSC formation, which involves the clathrin isoform CHC22. We observe that GLUT4 transits more slowly through the early secretory pathway than the constitutively-secreted GLUT1 transporter, and show CHC22 colocalizes with p115 in the endoplasmic-reticulum-to-Golgi-intermediate compartment (ERGIC). We find CHC22 functions in membrane traffic from the early secretory pathway during formation of the replication vacuole of Legionella pneumophila, which also acquires components of the GLUT4 pathway. We show that p115 but not GM130 is required for GSC formation, indicating GSC biogenesis from the ERGIC bypasses the Golgi. This GSC biogenesis pathway is attenuated in mice, which lack CHC22, and rely mainly on recapture of surface GLUT4 to populate their GSC. GLUT4 traffic to the GSC is enhanced by CHC22 function at the human ERGIC, which has implications for pathways to insulin resistance
- âŠ