344 research outputs found

    Andean Land Use And Biodiversity: Humanized Landscapes In A Time Of Change

    Get PDF
    Some landscapes Cannot be understood without reference., to the kinds. degrees, kinds, degrees, and history of human-caused modifications to the Earth's surface. The tropical latitudes of the Andes represent one such place, with agricultural land-use systems appearing in the Early Holocene. Current land use includes both intensive and extensive grazing and crop- or tree-based agricultural systems found across virtually the, entire range of possible elevations and humidity regimes. Biodiversity found in or adjacent to such humanized landscapes will have been altered in abundance. composition, and distribution in relation to the resiliency of the native Species to harvest, hold cover modifications, and other deliberate or inadvertent human land uses. In addition, the geometries of land cover, resulting flout difference among the shapes, sizes, connectivities, and physical structures of the patches, corridors, and matrices that compose landscape mosaics, will constrain biodiversity, often in predictable ways. This article proposes a conceptual model that alter ins that the Continued persistence of native species may depend as much oil the shifting Of Andean landscape mosaics as on species characteristics, themselves. Furthermore, mountains such as the Andes display long gradients of environmental Conditions that after in relation to latitude, soil moisture, aspect, and elevation. Global environmental change will shift these, especially temperature and humidity regimes along elevational gradients, causing Changes outside the historical range of variation for some species. Both land-use systems and Conservation efforts will need to respond spatially to these shifts in the future, at both landscape and regional scales.Geography and the Environmen

    Enhancing Functional Safety in Automotive AMS Circuits through Unsupervised Machine Learning

    Full text link
    Given the widespread use of safety-critical applications in the automotive field, it is crucial to ensure the Functional Safety (FuSa) of circuits and components within automotive systems. The Analog and Mixed-Signal (AMS) circuits prevalent in these systems are more vulnerable to faults induced by parametric perturbations, noise, environmental stress, and other factors, in comparison to their digital counterparts. However, their continuous signal characteristics present an opportunity for early anomaly detection, enabling the implementation of safety mechanisms to prevent system failure. To address this need, we propose a novel framework based on unsupervised machine learning for early anomaly detection in AMS circuits. The proposed approach involves injecting anomalies at various circuit locations and individual components to create a diverse and comprehensive anomaly dataset, followed by the extraction of features from the observed circuit signals. Subsequently, we employ clustering algorithms to facilitate anomaly detection. Finally, we propose a time series framework to enhance and expedite anomaly detection performance. Our approach encompasses a systematic analysis of anomaly abstraction at multiple levels pertaining to the automotive domain, from hardware- to block-level, where anomalies are injected to create diverse fault scenarios. By monitoring the system behavior under these anomalous conditions, we capture the propagation of anomalies and their effects at different abstraction levels, thereby potentially paving the way for the implementation of reliable safety mechanisms to ensure the FuSa of automotive SoCs. Our experimental findings indicate that our approach achieves 100% anomaly detection accuracy and significantly optimizes the associated latency by 5X, underscoring the effectiveness of our devised solution.Comment: 12 pages, 12 figure

    Optimization of sample preparation and instrumental parameters for the rapid analysis of drugs of abuse in hair samples by MALDI-MS/MS imaging

    Get PDF
    Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) has been employed to rapidly screen longitudinally sectioned drug user hair samples for cocaine and its metabolites using continuous raster imaging. Optimization of the spatial resolution and raster speed were performed on intact cocaine contaminated hair samples. The optimized settings (100 × 150 μm at 0.24 mm/s) were subsequently used to examine longitudinally sectioned drug user hair samples. The MALDI-MS/MS images showed the distribution of the most abundant cocaine product ion at m/z 182. Using the optimized settings, multiple hair samples obtained from two users were analyzed in approximately 3 h: six times faster than the standard spot-to-spot acquisition method. Quantitation was achieved using longitudinally sectioned control hair samples sprayed with a cocaine dilution series. A multiple reaction monitoring (MRM) experiment was also performed using the 'dynamic pixel' imaging method to screen for cocaine and a range of its metabolites, in order to differentiate between contaminated hairs and drug users. Cocaine, benzoylecgonine, and cocaethylene were detectable, in agreement with analyses carried out using the standard LC-MS/MS method. Graphical Abstract ᅟ

    Microwave-assisted hydrolysis and extraction of tricyclic antidepressants from human hair

    Get PDF
    The objective of this research was to develop, optimize, and validate a modern, rapid method of preparation of human hair samples, using microwave irradiation, for analysis of eight tricyclic antidepressants (TCADs): nordoxepin, nortriptyline, imipramine, amitriptyline, doxepin, desipramine, clomipramine, and norclomipramine. It was based on simultaneous alkaline hair microwave-assisted hydrolysis and microwave-assisted extraction (MAH–MAE). Extracts were analyzed by high-performance liquid chromatography with diode-array detection (HPLC–DAD). A mixture of n-hexane and isoamyl alcohol (99:1, v/v) was used as extraction solvent and the process was performed at 60°C. Application of 1.0 mol L−1 NaOH and microwave irradiation for 40 min were found to be optimum for hair samples. Limits of detection ranged from 0.3 to 1.2 μg g−1 and LOQ from 0.9 to 4.0 μg g−1 for the different drugs. This enabled us to quantify them in hair samples within average therapeutic concentration ranges

    The concentration of three anti-seizure medications in hair: the effects of hair color, controlling for dose and age

    Get PDF
    BACKGROUND: This paper assess the relationship between the quantity of three anti-seizure medications in hair and the color of the analyzed hair, while controlling for the effects of dose, dose duration, and patient age for 140 clinical patients undergoing anti-seizure therapy. Three drugs are assessed: carbamazepine (40 patients), valproic acid (40 patients), and phenytoin (60 patients). The relationship between hair assay results, hair color, dose, dose duration, and age is modeled using an analysis of covariance. The covariance model posits the hair assay results as the dependent variable, the hair color as the qualitative categorical independent variable, and dose, dose duration, and age as covariates. The null hypothesis assessed is that there is a no relationship between hair color and the quantity of analyte determined by hair assay such that darker colored hair will demonstrate higher concentrations of analyte than lighter colored hair. RESULTS: The analysis reveals that there is a significant relationship between dose and concentration for all hair color categories independent of the other covariates or the categorical independent variable. CONCLUSION: There does not appear to be any relationship between carbamazepine concentration and hair color. There is a weak relationship between hair color and valproic acid concentration, which the data suggest may be mediated by age. There is a significant, moderate relationship between phenytoin concentration and hair color such that darker colored hair has greater concentration values than lighter colored hair

    Gd-149:What's confirmed? What's new?

    Get PDF
    A long run performed with EUROGAM II allowed remeasuring the Gd-149 superdeformed (SD) band 1. The Delta I = 4 bifurcation in band 1 is confirmed and two resolved gamma-ray transitions linking the SD band 1 and the normal deformed states have been observed
    • …
    corecore