57 research outputs found
Coupling of Rotation and Catalysis in F1-ATPase Revealed by Single-Molecule Imaging and Manipulation
SummaryF1-ATPase is a rotary molecular motor that proceeds in 120° steps, each driven by ATP hydrolysis. How the chemical reactions that occur in three catalytic sites are coupled to mechanical rotation is the central question. Here, we show by high-speed imaging of rotation in single molecules of F1 that phosphate release drives the last 40° of the 120° step, and that the 40° rotation accompanies reduction of the affinity for phosphate. We also show, by single-molecule imaging of a fluorescent ATP analog Cy3-ATP while F1 is forced to rotate slowly, that release of Cy3-ADP occurs at ∼240° after it is bound as Cy3-ATP at 0°. This and other results suggest that the affinity for ADP also decreases with rotation, and thus ADP release contributes part of energy for rotation. Together with previous results, the coupling scheme is now basically complete
Neither Helix in the Coiled Coil Region of the Axle of F1-ATPase Plays a Significant Role in Torque Production
F1-ATPase is an ATP-driven rotary molecular motor in which the central γ-subunit rotates inside the cylinder made of α3β3 subunits. The amino and carboxy termini of the γ-subunit form the axle, an α-helical coiled coil that deeply penetrates the stator cylinder. We previously truncated the axle step by step, starting with the longer carboxy terminus and then cutting both termini at the same levels, resulting in a slower yet considerably powerful rotation. Here we examine the role of each helix by truncating only the carboxy terminus by 25–40 amino-acid residues. Longer truncation impaired the stability of the motor complex severely: 40 deletions failed to yield rotating the complex. Up to 36 deletions, however, the mutants produced an apparent torque at nearly half of the wild-type torque, independent of truncation length. Time-averaged rotary speeds were low because of load-dependent stumbling at 120° intervals, even with saturating ATP. Comparison with our previous work indicates that half the normal torque is produced at the orifice of the stator. The very tip of the carboxy terminus adds the other half, whereas neither helix in the middle of the axle contributes much to torque generation and the rapid progress of catalysis. None of the residues of the entire axle played a specific decisive role in rotation
Temperature Dependence of the Rotation and Hydrolysis Activities of F1-ATPase
F1-ATPase, a water-soluble portion of the enzyme ATP synthase, is a rotary molecular motor driven by ATP hydrolysis. To learn how the kinetics of rotation are regulated, we have investigated the rotational characteristics of a thermophilic F1-ATPase over the temperature range 4–50°C by attaching a polystyrene bead (or bead duplex) to the rotor subunit and observing its rotation under a microscope. The apparent rate of ATP binding estimated at low ATP concentrations increased from 1.2 × 106 M−1 s−1 at 4°C to 4.3 × 107 M−1 s−1 at 40°C, whereas the torque estimated at 2 mM ATP remained around 40 pN·nm over 4–50°C. The rotation was stepwise at 4°C, even at the saturating ATP concentration of 2 mM, indicating the presence of a hitherto unresolved rate-limiting reaction that occurs at ATP-waiting angles. We also measured the ATP hydrolysis activity in bulk solution at 4–65°C. F1-ATPase tends to be inactivated by binding ADP tightly. Both the inactivation and reactivation rates were found to rise sharply with temperature, and above 30°C, equilibrium between the active and inactive forms was reached within 2 s, the majority being inactive. Rapid inactivation at high temperatures is consistent with the physiological role of this enzyme, ATP synthesis, in the thermophile
Direct Observation of the Myosin Va Recovery Stroke That Contributes to Unidirectional Stepping along Actin
Myosins are ATP-driven linear molecular motors that work as cellular force
generators, transporters, and force sensors. These functions are driven by
large-scale nucleotide-dependent conformational changes, termed
“strokes”; the “power stroke” is the force-generating
swinging of the myosin light chain–binding “neck” domain
relative to the motor domain “head” while bound to actin; the
“recovery stroke” is the necessary initial motion that primes, or
“cocks,” myosin while detached from actin. Myosin Va is a processive
dimer that steps unidirectionally along actin following a “hand over
hand” mechanism in which the trailing head detaches and steps forward
∼72 nm. Despite large rotational Brownian motion of the detached head about
a free joint adjoining the two necks, unidirectional stepping is achieved, in
part by the power stroke of the attached head that moves the joint forward.
However, the power stroke alone cannot fully account for preferential forward
site binding since the orientation and angle stability of the detached head,
which is determined by the properties of the recovery stroke, dictate actin
binding site accessibility. Here, we directly observe the recovery stroke
dynamics and fluctuations of myosin Va using a novel, transient caged
ATP-controlling system that maintains constant ATP levels through stepwise
UV-pulse sequences of varying intensity. We immobilized the neck of monomeric
myosin Va on a surface and observed real time motions of bead(s) attached
site-specifically to the head. ATP induces a transient swing of the neck to the
post-recovery stroke conformation, where it remains for ∼40 s, until ATP
hydrolysis products are released. Angle distributions indicate that the
post-recovery stroke conformation is stabilized by ≥5
kBT of energy. The high kinetic
and energetic stability of the post-recovery stroke conformation favors
preferential binding of the detached head to a forward site 72 nm away. Thus,
the recovery stroke contributes to unidirectional stepping of myosin Va
Purine, but not pyrimidine, nucleotides support rotation of F1-ATPase.
The binding change model for the
Direct Observation of Strand Passage by DNA-Topoisomerase and Its Limited Processivity
Type-II DNA topoisomerases resolve DNA entanglements such as supercoils, knots and catenanes by passing one segment of DNA duplex through a transient enzyme-bridged double-stranded break in another segment. The ATP-dependent passage reaction has previously been demonstrated at the single-molecule level, showing apparent processivity at saturating ATP. Here we directly observed the strand passage by human topoisomerase IIα, after winding a pair of fluorescently stained DNA molecules with optical tweezers for 30 turns into an X-shaped braid. On average 0.51±0.33 µm (11±6 turns) of a braid was unlinked in a burst of reactions taking 8±4 s, the unlinked length being essentially independent of the enzyme concentration between 0.25–37 pM. The time elapsed before the start of processive unlinking decreased with the enzyme concentration, being ∼100 s at 3.7 pM. These results are consistent with a scenario where the enzyme binds to one DNA for a period of ∼10 s, waiting for multiple diffusional encounters with the other DNA to transport it across the break ∼10 times, and then dissociates from the binding site without waiting for the exhaustion of transportable DNA segments
- …