63 research outputs found
Artificial Extracellular Matrix Proteins Containing Phenylalanine Analogues Biosynthesized in Bacteria Using T7 Expression System and the PEGylation
In vivo incorporation of phenylalanine (Phe) analogues into an artificial extracellular matrix protein (aECM-CS5-ELF) was accomplished using a bacterial expression host that harbors the mutant phenylalanyl-tRNA synthetase (PheRS) with an enlarged binding pocket. Although the Ala294Gly/Thr251Gly mutant PheRS (PheRS**) under the control of T5 promoter allows incorporation of some Phe analogues into a protein, the T5 system is not suitable for material science studies because the amount of materials produced is not sufficient due to the moderate strength of the T5 promoter. This limitation can be overcome by using a pair of T7 promoter and T7 RNA polymerase instead. In the T7 expression system, it is difficult, however, to achieve a high incorporation level of Phe analogues, due to competition of Phe analogues for incorporation with the residual Phe that is required for synthesis of active T7 RNA polymerase. In this study, we prepared the PheRS** under T7 promoter and optimized culture condition to improve both the incorporation level of recombinant aECM protein and the incorporation level of Phe analogues. Incorporation and expression levels tend to increase in the case of p-azidophenylalanine, p-iodophenylalanine, and p-acetylphenylalanine. We evaluated the lower critical transition temperature, which is dependent on the incorporation ratio and the turbidity decreased when the incorporation level increased. Circular dichromism measurement indicated that this tendency is based on conformational change from random coil to β-turn structure. We demonstrated that polyethylene glycol (PEG) can be conjugated at reaction site of Phe analogues incorporated. We also demonstrated that the increased hydrophilicity of elastin-like sequences in the aECM-CS5-ELF made by PEG conjugation could suppress nonspecific adhesion of human umbilical vein endothelial cells (HUVEC)
Strategy for Designing Self-Assembling Peptides to Prepare Transparent Nanofiber Hydrogel at Neutral pH
This study examined the formation of nanofiber hydrogels at neutral pH for 16 types of peptides with different net charges, hydrophobicities, and degrees of polymerization. The peptides formed various hydrogels depending on the arrangement of charged amino acids in the antiparallel β-sheet structure. Circular dichroism (CD) measurement, atomic force microscopy (AFM), visible light spectroscopy, and dynamic viscoelasticity measurement showed that the formation of transparent nanofiber hydrogels in peptides requires at least 2 additional positively or negatively charged amino acids per peptide. When designing the amino acid sequence, it is important to consider both the net charge and position of the charged amino acids, and it should be ensured that basic amino acids do not face other basic ones in the antiparallel β-sheet structure. Peptides that had charged amino acids clustered at the center of the nanofiber formed rigid gels
Rho and Anillin-dependent Control of mDia2 Localization and Function in Cytokinesis
Diaphanous-related formin, mDia, is an actin nucleation/polymerization factor functioning downstream of the small GTPase Rho. We found that, in addition to the Rho GTPase-mediated activation, the interaction between mDia2 and anillin is required for the localization and function of mDia2 in cytokinesis
Failure of DNA double-strand break repair by tau mediates Alzheimer’s disease pathology in vitro
DNA double-strand break (DSB) is the most severe form of DNA damage and accumulates with age, in which cytoskeletal proteins are polymerized to repair DSB in dividing cells. Since tau is a microtubule-associated protein, we investigate whether DSB is involved in tau pathologies in Alzheimer’s disease (AD). First, immunohistochemistry reveals the frequent coexistence of DSB and phosphorylated tau in the cortex of AD patients. In vitro studies using primary mouse cortical neurons show that non-p-tau accumulates perinuclearly together with the tubulin after DSB induction with etoposide, followed by the accumulation of phosphorylated tau. Moreover, the knockdown of endogenous tau exacerbates DSB in neurons, suggesting the protective role of tau on DNA repair. Interestingly, synergistic exposure of neurons to microtubule disassembly and the DSB strikingly augments aberrant p-tau aggregation and apoptosis. These data suggest that DSB plays a pivotal role in AD-tau pathology and that the failure of DSB repair leads to tauopathy
Opposing Roles of Dopamine Receptor D1- and D2-Expressing Neurons in the Anteromedial Olfactory Tubercle in Acquisition of Place Preference in Mice
Olfaction induces adaptive motivated behaviors. Odors associated with food induce attractive behavior, whereas those associated with dangers induce aversive behavior. We previously reported that learned odor-induced attractive and aversive behaviors accompany activation of the olfactory tubercle (OT) in a domain- and cell type-specific manner. Odor cues associated with a sugar reward induced attractive behavior and c-fos expression in the dopamine receptor D1-expressing neurons (D1 neurons) in the anteromedial OT. In contrast, odor cues associated with electrical shock induced aversive behavior and c-fos expression in the pamine receptor D2-expressing neurons (D2 neurons) in the anteromedial OT, as well as the D1 neurons in the lateral OT. Here, we investigated whether the D1 and D2 neurons in the anteromedial OT play distinct roles in attractive or aversive behaviors, using optogenetic stimulation and real-time place preference (RTPP) tests. Mice expressing ChETA (ChR2/E123T)-enhanced yellow fluorescent protein (EYFP) in the D1 neurons in the anteromedial OT spent a longer time in the photo-stimulation side of the place preference chamber than the control mice expressing EYFP. On the other hand, upon optogenetic stimulation of the D2 neurons in the anteromedial OT, the mice spent a shorter time in the photo-stimulation side than the control mice. Local neural activation in the anteromedial OT during the RTPP tests was confirmed by c-fos mRNA expression. These results suggest that the D1 and D2 neurons in the anteromedial OT play opposing roles in attractive and aversive behaviors, respectively
Operational Review of the First Wireline In Situ Stress Test in Scientific Ocean Drilling
Scientific ocean drilling’s first in situ stress measurement was made at Site C0009A during Integrated Ocean Drilling Program (IODP) Expedition 319 as part of Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Stage 2. The Modular Formation Dynamics Tester (MDT, Schlumberger)wireline logging tool was deployed in riser Hole C0009A to measure in situ formation pore pressure, formation permeability (often reported as mobility=permeability/viscosity), and the least principal stress (S3) at several isolated depths (Saffer et al., 2009; Expedition 319 Scientists, 2010). The importance of in situ stress measurements is not only for scientific interests in active tectonic drilling, but also for geomechanical and well bore stability analyses. Certain in situ tools were not previously available for scientific ocean drilling due to the borehole diameter and open hole limits of riserless drilling. The riser-capable drillship, D/V Chikyu,now in service for IODP expeditions, allows all of the techniques available to estimate the magnitudes and orientations of 3-D stresses to be used. These techniques include downhole density logging for vertical stress, breakout and caliper log analyses for maximum horizontal stress, core-based anelastic strain recovery (ASR, used in the NanTroSEIZE expeditions in 2007–2008), and leak-off test (Lin et al., 2008) and minifrac/hydraulic fracturing (NanTroSEIZE Expedition319 in 2009). In this report, the whole operational planning process related to in situ measurements is reviewed, and lessons learned from Expedition 319 are summarized for efficient planning and testing in the future
- …