40 research outputs found

    Using Er:YAG laser to remove lithium disilicate crowns from zirconia implant abutments: An in vitro study

    Get PDF
    Background When implants are restored with cement-retained restorations, prosthetic retrievability can be difficult and often requires sectioning using rotary instruments. Sometimes repeated removals of a cement-retained implant crown are needed such as for treatment of peri-implantitis or immediate implant provisionalization. The purpose of this study was to evaluate the effect of erbium-doped yttrium aluminum garnet (Er:YAG) laser as a non-invasive treatment modality to remove lithium disilicate crowns from zirconia implant abutments following long-term cementation, repetitive debonding and re-cementation, and short-term retrieval. Material and methods Twenty identical lithium disilicate crowns were cemented onto zirconia prefabricated abutments using composite resin cement. Ten cemented crowns were removed at 48 hours after cementation as a short-term group (ST), while another 10 were removed 6 months after cementation as a long-term group (LT). To mimicking repetitive recementation and retrieval, the LT crowns were then recemented and removed after 48 hours as a long-term recemention (LTR) group. The LTR crowns were then again recemented and removed after 48 hours as a long-term repeated recemention (LTRR) group. Er:YAG laser was used to facilitate the retrieval of these crowns. recorded and analyzed using ANOVA and t-test. The surfaces of the crown and the abutment were further examined using light microscopy and scanning electron microscopy (SEM). Temperature changes of the abutment and crown upto 10 minutes were also measured and statistically analyzed (paired t-test). Results The average times of crown removal from zirconia abutments were 4 minutes (min) and 42 second (sec) in LT to 3 min 24 sec in LTR, and 3 min 12 sec in LTRR and ST groups. LTR took the longest time to remove, statistically (ANOVA and t-test, p \u3c .001). No statistical differences were observed among the removal times of LTR, LTRR, and ST groups (t-test, p = .246, .246 and 1). SEM examination of the material surface showed no visual surface damaging from treatment with Er:YAG laser. The temperatures during irradiation ranged from 18.4°C to 20°C and 22.2°C to 24.5°C (Paired t-test, p \u3c .0001) for the abutment and the crown during irradiation from 1 min to 10 mins. Conclusions Long-term cementation can increase time in lithium disilicate crown removal from zirconia abutment using Er:YAG. Er:YAG laser is a non-invasive tool to remove cement-retained implant prostheses and should be considered as a viable alternative to rotary instruments

    Sodium Hypochlorite and Diode Laser in Non-Surgical Treatment of Periodontitis: Clinical and Bacteriological Study with Real Time Polymerase Chain Reaction (PCR).

    Full text link
    peer reviewedIncreasing the disinfection during non-surgical treatment of periodontitis is primordial. This study assesses the effectiveness of sodium hypochlorite and a 980 nm diode laser in non-surgical treatment of periodontitis. Thirty sites of localized periodontitis with a probing pocket depth (PPD) of ≥ 6 mm were included. Fifteen underwent scaling root planing (SRP group) and 15 underwent SRP + 0.5% NaOCl and a 980 nm diode laser (study group). A biological molecular test and real time polymerase chain reaction (RT-PCR) were performed before (T0) and after intervention (T1). Total bacterial count and counts of Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, Prevotella intermedia, Peptostreptococcus micros, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Eubacterium nodatum, Capnocytophaga gingivalis were assessed. Plaque index (PI), bleeding on probing (BOP), gingival recession (GR), PPD and clinical attachment loss (CAL) were evaluated at T0, and 3 and 6 months after. Study group showed a statistically significant reduction of TBC (5.66 × 108 CFU/mL) compared to SRP (6.2 × 109 CFU/mL). Both groups showed a statistically significant reduction of Treponema denticola, Tannerella forsythia, Prevotella intermedia, Peptostrep. (micromonas) micros and Fusobacterium nucleatum; however, a significant reduction of Eubacterium nodatum and Capnocytophaga gingivalis was observed in the study group. At T6, both groups had a statistically significant reduction of PI, BOP, GR, PD and CAL. The study group showed more GR compared to SRP and a significant reduction of PD (4.03 mm ± 0.49) compared to SRP (5.28 mm ± 0.67). This study reveals that NaOCl and a diode laser are effective as an adjunctive to the non-surgical treatment of periodontitis.3. Good health and well-bein

    Photobiomodulation Therapy Applied after 6 Months for the Management of a Severe Inferior Alveolar Nerve Injury.

    Full text link
    peer reviewedDespite its significant negative impact on the quality of life, the methods for the management of the inferior alveolar nerve (IAN) injury are still limited. In this case report, the patient did not show any improvement from the day of the iatrogenic accident until 6 months. A significant improvement of the symptoms started to appear only at 6 months when PBMT was applied. A total of 42 sessions of PBMT took place. The application zone included intraoral and extraoral areas. The parameters were: Delivery power of 0.1 W, for 40 s, continuous wave (CW), contact mode, and delivered energy of 4 J. The delivered energy density related to the fiber diameter was 1415 J/cm2. Each treated point was considered to be 1 cm2 of diameter. At the end of the treatment, all of the symptoms disappeared except for an abnormal sensation on touching the mucosa and gingiva of the concerned area. No side effects were noted. This case report shows that PBMT can be a very promising approach for the management of severe cases that are not improving with conventional methods

    Exploring the use of pulsed erbium lasers to retrieve a zirconia crown from a zirconia implant abutment

    Get PDF
    Background Removal of cement-retained implant fixed restorations when needed, can be challenging. Conventional methods of crown removal are time consuming and costly for patients and practitioners. This research explored the use of two different types of pulsed erbium lasers as a non-invasive tool to retrieve cemented zirconia crowns from zirconia implant abutments. Materials and methods Twenty identical zirconia crowns were cemented onto 20 identical zirconia prefabricated abutments using self-adhesive resin cement. The specimens were divided into two groups for laser assisted crown removal; G1 for erbium-doped yttrium aluminum garnet laser (Er:YAG), and G2 for erbium, chromium-doped yttrium, scandium, gallium and garnet (Er,Cr:YSGG). For the G1, after the first crown removal, the specimens were re-cemented and removed again using the Er:YAG laser. Times needed to remove the crowns were recorded and analyzed using ANOVA (α = 0.05). The surfaces of the crown and the abutment were further examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses. Results The average times of zirconia crown removal from zirconia abutments were 5 min 20 sec and 5 min 15 sec for the Er:YAG laser of first and second experiments (G1), and 5 min 55 sec for the Er,Cr:YSGG laser experiment (G2). No statistical differences were observed among the groups. SEM and EDS examinations of the materials showed no visual surface damaging or material alteration from the two pulsed erbium lasers. Conclusions Both types of pulsed erbium lasers can be viable alternatives for retrieving a zirconia crown from a zirconia implant abutment. Despite operating at different wavelengths, the Er:YAG and Er,Cr:YSGG lasers, perform similarly in removing a zirconia crown from a zirconia implant abutment with similar parameters. There are no visual and elemental composition damages as a result of irradiation with pulsed erbium lasers

    Disinfection Potential of 980 nm Diode Laser and Hydrogen Peroxide (3%) in "Critical Probing Depths" Periodontal Pockets: Retrospective Study.

    Full text link
    peer reviewedA successful treatment of periodontitis depends largely on the successful elimination of the periodontopathogens during non-surgical and surgical mechanical debridement. In this retrospective study, data collection was conducted from 2017 to 2021. The retrospective study included 128 patients with 128 sites of localized periodontitis with pocket depths > 5 mm. The included data were based on sites that received conventional mechanical debridement followed by different adjunctive approaches. In total, 30 patients did not receive any additional treatment (SRP group), 30 patients received SRP + 980 nm diode laser irradiation only (SRP + laser), 30 patients received SRP + 3% hydrogen peroxide irrigation (SRP + H2O2) only and 30 patients received a combined treatment of 3% hydrogen peroxide and 980 nm diode laser irradiation (SRP + H2O2 + laser). Total bacterial counts (TBC) in the periodontal pocket collected for all participants before treatment, immediately after treatment, 6 weeks after treatment, 12 weeks after treatment and 6 months after treatment were statistically analyzed and compared. When the laser was used, irradiation parameters were 10 μsec/pulse duration, 10 kHz, pick power of 10 W, average power of 1 W, irradiation time of one minute with inward and outward movements, and fiber diameter of 320 μm. The irradiation was repeated 3 times/pocket. When hydrogen peroxide was used, the irrigation was conducted for one minute and repeated 3 times. The maximum reduction in TBC was obtained when SRP was coupled with 3% H2O2 irrigation followed by 980 nm diode laser irradiation. After six months of follow-up, a significant reduction in TBC was obtained for the group of SRP + H2O2 + laser when compared to all the other groups, from 7.27 × 107 before intervention to 3.21 × 107 after six months. All three approaches to SRP showed a significant reduction in TBC immediately after treatment. Values were 3.52 × 107, 4.01 × 106, 9.58 × 106, 1.98 × 106 for SRP alone, SRP + diode, SRP + H2O2 and SRP + H2O2 + diode laser, respectively. At 6 months, we saw no significant difference between SRP + laser and SRP + H2O2 with 4.01 × 107 and 4.32 × 107, respectively. This retrospective study reveals that after SRP, irrigation with 3% hydrogen peroxide and irradiation with a 980 nm diode laser within specific treatment protocol can be used as an additional approach to conventional SRP to increase the disinfection of the periodontal pockets > 5 mm

    Aesthetic Treatment Outcomes of Capillary Hemangioma, Venous Lake, and Venous Malformation of the Lip Using Different Surgical Procedures and Laser Wavelengths (Nd:YAG, Er,Cr:YSGG, CO2, and Diode 980 nm).

    Full text link
    peer reviewedDifferent approaches with different clinical outcomes have been found in treating capillary hemangioma (CH), venous lake (VL), or venous malformations (VM) of the lips. This retrospective study aims to assess scar quality, recurrence rate, and patient satisfaction after different surgeries with different laser wavelengths. A total of 143 patients with CH or VM were included. Nd:YAG laser was used for 47 patients, diode 980 nm laser was used for 32 patients (treatments by transmucosal photo-thermo-coagulation), Er,Cr:YSSG laser was used for 12 patients (treatments by excision), and CO2 laser was used for 52 patients (treatments by photo-vaporization). The Manchester scar scale was used by practitioners to assess the scar quality. The recurrence rate and patients' satisfaction were noted at different follow-ups during 12 months. Our retrospective study showed that laser-assisted aesthetic treatment of vascular lesions (CH, VL, and VM) of the lips can be considered effective regardless of the wavelength used (Er,Cr:YSGG, CO2, Nd:YAG, and diode 980 nm) or the treatment procedure (transmucosal photo-thermo-coagulation, photo-vaporization, and surgical excision). There was no significant difference in patient and practitioner satisfaction with aesthetic outcome at 6 months follow-up. Furthermore, the treatments of lip vascular lesions performed using Er,Cr:YSGG and CO2 lasers did not show any recurrence during the 12 months of follow-up, while recurrence rates of 11% ± 1.4% and 8% ± 0.9% were seen in the diode and Nd:YAG groups, respectively

    The Effect of Er:YAG Lasers on the Reduction of Aerosol Formation for Dental Workers

    No full text
    Infection prevention in dental practice plays a major role, especially during the COVID-19 pandemic. This study aimed to measure the quantity of aerosol released during various dental procedures (caries and prosthetic treatment, debonding of orthodontic brackets, root canal irrigation) while employing the Er:YAG lasers combined with a high-volume evacuator, HVE or salivary ejector, SE. The mandibular second premolar was extracted due to standard orthodontic therapy and placed in a dental manikin, to simulate typical treatment conditions. The particle counter was used to measure the aerosol particles (0.3–10.0 μm) at three different sites: dental manikin and operator’s and assistant’s mouth area. The study results showed that caries’ treatment and dental crown removal with a high-speed handpiece and the use of the SE generated the highest aerosol quantity at each measured site. All three tested Er:YAG lasers significantly reduced the number of aerosol particles during caries’ treatment and ceramic crown debonding compared the conventional handpieces, p < 0.05. Furthermore, the Er:YAG lasers generated less aerosol during orthodontic bracket debonding and root canal irrigation in contrast to the initial aerosol quantity measured in the dental office. The use of the Er:YAG lasers during dental treatments significantly generates less aerosol in the dental office setting, which reduces the risk of transmission of viruses or bacteria

    Efficacy of the Adjunct Use of Povidone-Iodine or Sodium Hypochlorite with Non-Surgical Management of Periodontitis: A Systematic Review and Meta-Analysis.

    Full text link
    peer reviewedThis systematic review sought to assess the efficacy of combining either sodium hypochlorite or povidone-iodine as disinfection solutions with non-surgical treatment of periodontitis. An electronic search was conducted through PubMed, Scopus, Web of Science, CENTRAL, and Google Scholar from inception until 10 September 2022. Outcomes included clinical outcomes (probing pocket depth, plaque index, clinical attachment level, relative-horizontal attachment level, bleeding on probing, gingival recession, the position of gingival margin) and biochemical (BAPNA level) properties. A subgroup analysis was conducted according to the assessment timepoint. Ten studies reporting the use of povidone-iodine and five studies reporting the use of sodium hypochlorite were included in this review. Overall, in the meta-analysis of povidone-iodine, no significant changes were noted in any of the assessed outcomes; however, minor changes were noted in probing pocket depth and clinical attachment level at a specific timepoint. Regarding sodium hypochlorite, a significant reduction in all clinical outcomes, except for bleeding on probing, was noted. In conclusion, the use of povidone-iodine does not result in an improvement in clinical outcomes, whereas sodium hypochlorite has promising properties that result in significant improvement in probing pocket depth and clinical attachment level. However, more studies are needed to confirm these observations

    Dental Aerosol as a Hazard Risk for Dental Workers

    No full text
    Standard dental procedures, when using a water coolant and rotary instruments, generate aerosols with a significantly higher number of various dangerous pathogens (viruses, bacteria, and fungi). Reducing the amount of aerosols to a minimum is mandatory, especially during the new coronavirus disease, COVID-19. The study aimed to evaluate the amount of aerosol generated during standard dental procedures such as caries removal (using dental bur on a high and low-speed handpiece and Er:YAG laser), ultrasonic scaling, and tooth polishing (using silicon rubber on low-speed handpiece) combined with various suction systems. The airborne aerosols containing particles in a range of 0.3–10.0 μm were measured using the PC200 laser particle counter (Trotec GmbH, Schwerin, Germany) at three following sites, manikin, operator, and assistant mouth, respectively. The following suction systems were used to remove aerosols: saliva ejector, high volume evacuator, saliva ejector with extraoral vacuum, high volume evacuator with extraoral vacuum, Zirc® evacuator (Mr.Thirsty One-Step®), and two customized high volume evacuators (white and black). The study results showed that caries removal with a high-speed handpiece and saliva ejector generates the highest amount of spray particles at each measured site. The aerosol measurement at the manikin mouth showed the highest particle amount during caries removal with the low and high-speed handpiece. The results for the new high volume evacuator (black) and the Zirc® evacuator showed the lowest increase in aerosol level during caries removal with a high-speed handpiece. The Er:YAG laser used for caries removal produced the lowest aerosol amount at the manikin mouth level compared to conventional dental handpieces. Furthermore, ultrasonic scaling caused a minimal aerosol rise in terms of the caries removal with bur. The Er:YAG laser and the new wider high volume evacuators improved significantly suction efficiency during dental treatment. The use of new suction systems and the Er:YAG laser allows for the improvement of biological safety in the dental office, which is especially crucial during the COVID-19 pandemic
    corecore