3,526 research outputs found
Molecular Targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) within the Zebrafish Ovary: Insights into TCDD-induced Endocrine Disruption and Reproductive Toxicity
TCDD is a reproductive toxicant and endocrine disruptor, yet the mechanisms by which it causes these reproductive alterations are not fully understood. In order to provide additional insight into the molecular mechanisms that underlie TCDD\u27s reproductive toxicity, we assessed TCDD-induced transcriptional changes in the ovary as they relate to previously described impacts on serum estradiol concentrations and altered follicular development in zebrafish. In silico computational approaches were used to correlate candidate regulatory motifs with observed changes in gene expression. Our data suggest that TCDD inhibits follicle maturation via attenuated gonadotropin responsiveness and/or depressed estradiol biosynthesis, and that interference of estrogen-regulated signal transduction may also contribute to TCDD\u27s impacts on follicular development. TCDD may also alter ovarian function by disrupting various signaling pathways such as glucose and lipid metabolism, and regulation of transcription. Furthermore, events downstream from initial TCDD molecular-targets likely contribute to ovarian toxicity following chronic exposure to TCDD. Data presented here provide further insight into the mechanisms by which TCDD disrupts follicular development and reproduction in fish, and can be used to formulate new hypotheses regarding previously documented ovarian toxicity
Mathematical modelling of tissue-engineering angiogenesis
We present a mathematical model for the vascularisation of a porous scaffold following implantation in vivo. The model is given as a set of coupled non-linear ordinary differential equations (ODEs) which describe the evolution in time of the amounts of the different tissue constituents inside the scaffold. Bifurcation analyses reveal how the extent of scaffold vascularisation changes as a function of the parameter values. For example, it is shown how the loss of seeded cells arising from slow infiltration of vascular tissue can be overcome using a prevascularisation strategy consisting of seeding the scaffold with vascular cells. Using certain assumptions it is shown how the system can be simplified to one which is partially tractable and for which some analysis is given. Limited comparison is also given of the model solutions with experimental data from the chick chorioallantoic membrane (CAM) assay
A Business Plan for The Fitzgerald Institute
This piece seeks to develop a business strategy for the University of Akron\u27s Fitzgerald Institute for Entrepreneurship. The recommendations given were developed utilizing research on entrepreneurial education and the desires of students at the university
Optimization of strength and ductility in nanotwinned ultra-fine grained Ag: Twin density and grain orientations
Nanotwinned ultrafine grained Ag thick films with different twin densities and orientations have been synthesized by magnetron sputtering with a wide-range of deposition rates. The twin boundary (TB) spacings and orientations as well as the grain size for the different deposition conditions have been characterized by both synchrotron X-ray scattering and transmission electron microscopy (TEM). Structural characterization combined with uniaxial tensile tests of the free-standing films reveals a large increase in the yield strength for films deposited at high deposition rates without any accompanying change in the TB spacing – a behavior that is not reported in the literature. We find that films deposited at lower deposition rates exhibit more randomly oriented grains with a lower overall twin density (averaged over all the grains) than the more heavily twinned grains with strong 〈1 1 1〉 fiber texture in the films deposited at higher deposition rates. The TB spacing in the twinned grains, however, does not show any significant dependence on the deposition rate. The dependence of the strength and ductility on the twin density and orientations can be described by two different soft deformation modes: (1) untwinned grains and (2) nanowinned grains that are not oriented with 〈1 1 1〉 along the growth direction. The untwinned grains provide relatively low resistance to slip, and thus decreased strength, while the nanotwinned grains that are not oriented with 〈1 1 1〉 along the growth direction are softer than nanotwinned grains that are oriented with 〈1 1 1〉 along the growth direction. We have revealed that an ultrafine-grained (150–200 nm) structure consisting of a mixture of nanotwinned (∼8–12 nm spacing) and untwined grains yields the best combination of high strength and uniform tensile ductility
Equiangular Tight Frames That Contain Regular Simplices
An equiangular tight frame (ETF) is a type of optimal packing of lines in Euclidean space. A regular simplex is a special type of ETF in which the number of vectors is one more than the dimension of the space they span. In this paper, we consider ETFs that contain a regular simplex, that is, have the property that a subset of its vectors forms a regular simplex. As we explain, such ETFs are characterized as those that achieve equality in a certain well-known bound from the theory of compressed sensing. We then consider the so-called binder of such an ETF, namely the set of all regular simplices that it contains. We provide a new algorithm for computing this binder in terms of products of entries of the ETF\u27s Gram matrix. In certain circumstances, we show this binder can be used to produce a particularly elegant Naimark complement of the corresponding ETF. Other times, an ETF is a disjoint union of regular simplices, and we show this leads to a certain type of optimal packing of subspaces known as an equichordal tight fusion frame. We conclude by considering the extent to which these ideas can be applied to numerous known constructions of ETFs, including harmonic ETFs
Testing metallicity indicators at z~1.4 with the gravitationally lensed galaxy CASSOWARY 20
We present X-shooter observations of CASSOWARY 20 (CSWA 20), a star-forming
(SFR ~6 Msol/yr) galaxy at z=1.433, magnified by a factor of 11.5 by the
gravitational lensing produced by a massive foreground galaxy at z=0.741. We
analysed the integrated physical properties of the HII regions of CSWA 20 using
temperature- and density-sensitive emission lines. We find the abundance of
oxygen to be ~1/7 of solar, while carbon is ~50 times less abundant than in the
Sun. The unusually low C/O ratio may be an indication of a particularly rapid
timescale of chemical enrichment. The wide wavelength coverage of X-shooter
gives us access to five different methods for determining the metallicity of
CSWA 20, three based on emission lines from HII regions and two on absorption
features formed in the atmospheres of massive stars. All five estimates are in
agreement, within the factor of ~2 uncertainty of each method. The interstellar
medium of CSWA 20 only partially covers the star-forming region as viewed from
our direction; in particular, absorption lines from neutrals and first ions are
exceptionally weak. We find evidence for large-scale outflows of the
interstellar medium (ISM) with speeds of up 750 km/s, similar to the values
measured in other high-z galaxies sustaining much higher rates of star
formation.Comment: 18 pages, 11 figures, accepted for publication in MNRA
Recommended from our members
Understanding solvent spreading for Langmuir deposition of nanomaterial films: a Hansen solubility parameter approach
In order to prepare high-quality Langmuir films of two-dimensional materials it is important to select a solvent optimized for both exfoliation and spreading at the air-water interface. Whilst it is generally accepted that exfoliation and stabilisation of two-dimensional materials is well-described using the Hansen solubility parameter theory, a complementary description of solvent spreading behaviour is lacking.
To this end we develop an understanding of solvent spreading using a Hansen solubility parameter framework. Our model accurately predicts the behaviour of both water-immiscible and water-miscible solvents in Langmuir film formation experiments. We demonstrate that spreading behaviour can be modified by controlling the surface pressure of the subphase using an amphiphilic species and accordingly utilise this approach to determine the maximum spreading pressure for a selection of solvents. Ultimately, by building on this understanding we open up additional routes to optimize the preparation of Langmuir films of two-dimensional materials and other nanoparticles
Intergroup Dialogue in a High School Classroom
In this paper, we share our work using Intergroup Dialogue (IGD) for increasing group understanding, building relationships across difference, and enhancing understanding of social inequities. IGD is an emerging area of research in K–12 settings and with adolescents. Taking this into consideration, we used this well-developed critical pedagogy in higher education–related settings to design a qualitative case study that explored its use in a high school classroom. We worked with ninth- and tenth-grade students in their sociology class to examine how IGD affected their understanding of gender and society. We found evidence that IGD enhances empathy across different lived experiences, backgrounds, and perspectives. Furthermore, findings show IGD’s impact on improving intergroup understanding and relationships
- …