178 research outputs found

    Oncolysis of malignant human melanoma tumors by Coxsackieviruses A13, A15 and A18

    Get PDF
    Many RNA viruses are displaying great promise in the field of oncolytic virotherapy. Previously, we reported that the picornavirus Coxsackievirus A21 (CVA21) possessed potent oncolytic activity against cultured malignant melanoma cells and melanoma xenografts in mice. In the present study, we demonstrate that three additional Group A Coxsackieviruses; Coxsackievirus A13 (CVA13), Coxsackievirus A15 (CVA15) and Coxsackievirus A18 (CVA18), also have similar oncolytic activity against malignant melanoma. Each of the viruses grew quickly to high titers in cancer cells expressing ICAM-1 and intratumoral injection of preformed subcutaneous SK-Mel-28 xenografts in mice with CVA13, CVA15 and CVA18 resulted in significant tumor volume reduction

    Identifying a few foot-and-mouth disease virus signature nucleotide strings for computational genotyping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serotypes of the Foot-and-Mouth disease viruses (FMDVs) were generally determined by biological experiments. The computational genotyping is not well studied even with the availability of whole viral genomes, due to uneven evolution among genes as well as frequent genetic recombination. Naively using sequence comparison for genotyping is only able to achieve a limited extent of success.</p> <p>Results</p> <p>We used 129 FMDV strains with known serotype as training strains to select as many as 140 most serotype-specific nucleotide strings. We then constructed a linear-kernel Support Vector Machine classifier using these 140 strings. Under the leave-one-out cross validation scheme, this classifier was able to assign correct serotype to 127 of these 129 strains, achieving 98.45% accuracy. It also assigned serotype correctly to an independent test set of 83 other FMDV strains downloaded separately from NCBI GenBank.</p> <p>Conclusion</p> <p>Computational genotyping is much faster and much cheaper than the wet-lab based biological experiments, upon the availability of the detailed molecular sequences. The high accuracy of our proposed method suggests the potential of utilizing a few signature nucleotide strings instead of whole genomes to determine the serotypes of novel FMDV strains.</p

    Complete sequence and genomic annotation of carrot torradovirus 1

    Get PDF
    Carrot torradovirus 1 (CaTV1) is a new member of the genus Torradovirus within the family Secoviridae. CaTV1 genome sequences were obtained from a previous next-generation sequencing (NGS) study and were compared to other members and tentative new members of the genus. The virus has a bipartite genome, and RACE was used to amplify and sequence each end of RNA1 and RNA2. As a result, RNA1 and RNA2 are estimated to contain 6944 and 4995 nucleotides, respectively, with RNA1 encoding the proteins involved in virus replication, and RNA2 encoding the encapsidation and movement proteins. Sequence comparisons showed that CaTV1 clustered within the non-tomato-infecting torradoviruses and is most similar to motherwort yellow mottle virus (MYMoV). The nucleotide sequence identities of the Pro-Pol and coat protein regions were below the criteria established by the ICTV for demarcating species, confirming that CaTV1 should be classified as a member of a new species within the genus Torradovirus

    Genome characterization of Long Island tick rhabdovirus, a new virus identified in Amblyomma americanum ticks

    Get PDF
    Background: Ticks are implicated as hosts to a wide range of animal and human pathogens. The full range of microbes harbored by ticks has not yet been fully explored. Methods: As part of a viral surveillance and discovery project in arthropods, we used unbiased high-throughput sequencing to examine viromes of ticks collected on Long Island, New York in 2013. Results: We detected and sequenced the complete genome of a novel rhabdovirus originating from a pool of Amblyomma americanum ticks. This virus, which we provisionally name Long Island tick rhabdovirus, is distantly related to Moussa virus from Africa. Conclusions: The Long Island tick rhabdovirus may represent a novel species within family Rhabdoviridae

    Evolution of infectious bronchitis virus in the field after homologous vaccination introduction

    Get PDF
    International audienceAbstractDespite the fact that vaccine resistance has been typically considered a rare phenomenon, some episodes of vaccine failure have been reported with increasing frequency in intensively-raised livestock. Infectious bronchitis virus (IBV) is a widespread avian coronavirus, whose control relies mainly on extensive vaccine administration. Unfortunately, the continuous emergence of new vaccine-immunity escaping variants prompts the development of new vaccines. In the present work, a molecular epidemiology study was performed to evaluate the potential role of homologous vaccination in driving IBV evolution. This was undertaken by assessing IBV viral RNA sequences from the ORF encoding the S1 portion of viral surface glycoprotein (S) before and after the introduction of a new live vaccine on broiler farms in northern-Italy. The results of several biostatistics analyses consistently demonstrate the presence of a higher pressure in the post-vaccination period. Natural selection was detected essentially on sites located on the protein surface, within or nearby domains involved in viral attachment or related functions. This evidence strongly supports the action of vaccine-induced immunity in conditioning viral evolution, potentially leading to the emergence of new vaccine-escape variants. The great plasticity of rapidly-evolving RNA-viruses in response to human intervention, which extends beyond the poultry industry, is demonstrated, claiming further attention due to their relevance for animal and especially human health
    corecore