46 research outputs found

    Trends in Stage-Specific Incidence Rates for Urothelial Carcinoma of the Bladder in the United States: 1988 to 2006

    Get PDF
    Bladder cancer is notable for a striking heterogeneity of disease-specific risks. Among the approximately 75% of incident cases found to be superficial to the muscularis propria at the time of presentation (non-muscle-invasive bladder cancer), the risk of progression to the lethal phenotype of muscle-invasive disease is strongly associated with stage and grade of disease. Given the suggestion of an increasing percentage of low-risk cases in hospital-based registry data in recent years, the authors hypothesized that population-based data may reveal changes in the stage distribution of early-stage cases

    Mathematical and experimental investigation of water migration in plant xylem

    Get PDF
    Plant can take water from soil up to several metres high. However, the mechanism of how water rises against gravity is still controversially discussed despite a few mechanisms have been proposed. Also, there still lacks of a critical transportation model because of the diversity and complex xylem structure of plants. This paper mainly focuses on the water transport process within xylem and a mathematical model is presented. With a simplified micro channel from xylem structure and the calculation using the model of water migration in xylem, this paper identified the relationship between various forces and water migration velocity. The velocity of water migration within the plant stem is considered as detail as possible using all major forces involved, and a full mathematical model is proposed to calculate and predict the velocity of water migration in plants. Using details of a specific plant, the velocity of water migration in the plant can be calculated, and then compared to the experimental result from Magnetic Resonance Imaging (MRI). The two results match perfectly to each other, indicating the accuracy of the mathematical model, thus the mathematical model should have brighter future in further applications

    The response of tropical rainforests to drought : lessons from recent research and future prospects

    Get PDF
    Key message: we review the recent findings on the influence of drought on tree mortality, growth or ecosystem functioning in tropical rainforests. Drought plays a major role in shaping tropical rainforests and the response mechanisms are highly diverse and complex. The numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical rainforests on the three continents. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance. - Context: tropical rainforest ecosystems are characterized by high annual rainfall. Nevertheless, rainfall regularly fluctuates during the year and seasonal soil droughts do occur. Over the past decades, a number of extreme droughts have hit tropical rainforests, not only in Amazonia but also in Asia and Africa. The influence of drought events on tree mortality and growth or on ecosystem functioning (carbon and water fluxes) in tropical rainforest ecosystems has been studied intensively, but the response mechanisms are complex.- Aims: herein, we review the recent findings related to the response of tropical forest ecosystems to seasonal and extreme droughts and the current knowledge about the future of these ecosystems. - Results: this review emphasizes the progress made over recent years and the importance of the studies conducted under extreme drought conditions or in through-fall exclusion experiments in understanding the response of these ecosystems. It also points to the great diversity and complexity of the response of tropical rainforest ecosystems to drought. - Conclusion: the numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical forest regions. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance

    The Mobile Agents Integrated Field Test: The Mars Desert Research Station April 2003

    No full text
    The Mobile Agents model-based, distributed architecture, which integrates diverse components in a system for lunar and planetary surface operations, was extensively tested in a two-week field “technology retreat ” at the Mars Society’s Desert Research Station (MDRS) during April 2003. More than twenty scientists and engineers from three NASA centers and two universities refined and tested the system through a series of incremental scenarios. Agent software, implemented in runtime Brahms, processed GPS, health data, and voice commands—monitoring, controlling and logging science data throughout simulated EVAs with two geologists. Predefined EVA plans, modified on the fly by voice command, enabled the Mobile Agents system to provide navigation and timing advice. Communications were maintained over five wireless nodes distributed over hills and into canyons for 5 km; data, including photographs and status was transmitted automatically to the desktop at mission control in Houston. This paper describes the system configurations, communication protocols, scenarios, and test results. Backgroun

    Mobile Agents: A Distributed Voice-Commanded Sensory and Robotic System for Surface EVA Assistance

    No full text
    A model-based, distributed architecture integrates diverse components in a system designed for lunar and planetary surface operations: spacesuit biosensors, cameras, GPS, and a robotic assistant. The system transmits data and assists communication between the extra-vehicular activity (EVA) astronauts, the crew in a local habitat, and a remote mission support team. Software processes ("agents"), implemented in a system called Brahms, run on multiple, mobile platforms, including the spacesuit backpacks, all-terrain vehicles, and robot. These "mobile agents" interpret and transform available data to help people and robotic systems coordinate their actions to make operations more safe and efficient. Different types of agents relate platforms to each other ("proxy agents"), devices to software ("comm agents"), and people to the system ("personal agents"). A state-of-the-art spoken dialogue interface enables people to communicate with their personal agents, supporting a speech-driven navigation and scheduling tool, field observation record, and rover command system. An important aspect of the engineering methodology involves first simulating the entire hardware and software system in Brahms, and then configuring the agents into a runtime system. Design of mobile agent functionality has been based on ethnographic observation of scientists working in Mars analog settings in the High Canadian Arctic on Devon Island and the southeast Utah desert. The Mobile Agents system is developed iteratively in the context of use, with people doing authentic work. This paper provides a brief introduction to the architecture and emphasizes the method of empirical requirements analysis, through which observation, modeling, design, and testing are integrated in simulated EVA operations
    corecore