89 research outputs found

    Dual-Band Microstrip Patch Antenna with Switchable Orthogonal Linear Polarizations

    Get PDF
    This study presents a dual-band polarization-reconfigurable antenna that comprises a large square patch with a pair of corner-cut edges and two small square patches with a shorting via. Two PIN diodes are located between the large square patch and two small square patches. Depending on the bias state applied to the two PIN diodes, each small patch may be disconnected or connected to the large square patch. As a result, the proposed antenna can provide polarization reconfigurability between two orthogonal linear polarizations. Further, the proposed antenna operates at 2.51 GHz and 2.71 GHz. From the measured results, the proposed antenna shows a 10 dB bandwidth of 2.39% (2.49–2.55 GHz) and 2.58% (2.68–2.75 GHz). In this work, the frequency ratio can be easily controlled by changing the size of the small patch

    Single crystalline hollow metal-organic frameworks: a metal-organic polyhedron single crystal as a sacrificial template

    Get PDF
    Single crystalline hollow metal-organic frameworks (MOFs) with cavity dimensions on the order of several micrometers and hundreds of micrometers were prepared using a metal-organic polyhedron single crystal as a sacrificial hard template. The hollow nature of the MOF crystal was confirmed by scanning electron microscopy of the crystal sliced using a focused ion beam.open2

    The Influence of New and Artificial Aged Microplastic and Leachates on the Germination of Lepidium sativum L.

    Get PDF
    With the increase in environmental monitoring and assessing, we are gaining insight into the extent of microplastic pollution in our environment. The threat posed by microplastics to biota could come, e.g., from leached substances. As some plastic materials have been decaying in nature for extended periods already, the toxic effects of leaching compounds need to be investigated. It is furthermore essential to understand the adverse effects of new plastic and how these effects differ from the effects elicited by old plastic material. Therefore, in the present study, the effects of exposure to leachates from new and artificial aged polycarbonate as well as new and aged polycarbonate granules on various germination parameters of Lepidium sativum were studied. Germination, root, and shoot length, as well as the calculated germination rate index as a measure for germination speed, was negatively influenced in substrate-free and substrate containing exposures. From an ecological and agricultural point of view, this implies possible yield losses with less germinating seeds, slower plant germination speed, and smaller seedlings in general

    The Influence of New and Artificial Aged Microplastic and Leachates on the Germination of Lepidium sativum L.

    Get PDF
    With the increase in environmental monitoring and assessing, we are gaining insight into the extent of microplastic pollution in our environment. The threat posed by microplastics to biota could come, e.g., from leached substances. As some plastic materials have been decaying in nature for extended periods already, the toxic effects of leaching compounds need to be investigated. It is furthermore essential to understand the adverse effects of new plastic and how these effects differ from the effects elicited by old plastic material. Therefore, in the present study, the effects of exposure to leachates from new and artificial aged polycarbonate as well as new and aged polycarbonate granules on various germination parameters of Lepidium sativum were studied. Germination, root, and shoot length, as well as the calculated germination rate index as a measure for germination speed, was negatively influenced in substrate-free and substrate containing exposures. From an ecological and agricultural point of view, this implies possible yield losses with less germinating seeds, slower plant germination speed, and smaller seedlings in general

    The Influence of New and Artificial Aged Microplastic and Leachates on the Germination of Lepidium sativum L.

    Get PDF
    With the increase in environmental monitoring and assessing, we are gaining insight into the extent of microplastic pollution in our environment. The threat posed by microplastics to biota could come, e.g., from leached substances. As some plastic materials have been decaying in nature for extended periods already, the toxic effects of leaching compounds need to be investigated. It is furthermore essential to understand the adverse effects of new plastic and how these effects differ from the effects elicited by old plastic material. Therefore, in the present study, the effects of exposure to leachates from new and artificial aged polycarbonate as well as new and aged polycarbonate granules on various germination parameters of Lepidium sativum were studied. Germination, root, and shoot length, as well as the calculated germination rate index as a measure for germination speed, was negatively influenced in substrate-free and substrate containing exposures. From an ecological and agricultural point of view, this implies possible yield losses with less germinating seeds, slower plant germination speed, and smaller seedlings in general.Peer reviewe

    E-beam-enhanced solid-state mechanical amorphization of alpha-quartz: Reducing deformation barrier via localized excess electrons as mobile anions

    Full text link
    Under hydrostatic pressure, alpha-quartz undergoes solid-state mechanical amorphization wherein the interpenetration of SiO4 tetrahedra occurs and the material loses crystallinity. This phase transformation requires a high hydrostatic pressure of 14 GPa because the repulsive forces resulting from the ionic nature of the Si-O bonds prevent the severe distortion of the atomic configuration. Herein, we experimentally and computationally demonstrate that e-beam irradiation changes the nature of the interatomic bonds in alpha-quartz and enhances the solid-state mechanical amorphization at nanoscale. Specifically, during in situ uniaxial compression, a larger permanent deformation occurs in alpha-quartz micropillars compressed during e-beam irradiation than in those without e-beam irradiation. Microstructural analysis reveals that the large permanent deformation under e-beam irradiation originates from the enhanced mechanical amorphization of alpha-quartz and the subsequent viscoplastic deformation of the amorphized region. Further, atomic-scale simulations suggest that the delocalized excess electrons introduced by e-beam irradiation move to highly distorted atomic configurations and alleviate the repulsive force, thus reducing the barrier to the solid-state mechanical amorphization. These findings deepen our understanding of electron-matter interactions and can be extended to new glass forming and processing technologies at nano- and microscale.Comment: 24 pages, 6 figure

    DIFFERENCES OF POSTURE ON PUSH-OFF PHASE BETWEEN ACTUAL SPEED SKATING AND SLIDE-BOARD TRAINING

    Get PDF
    The slide-board training is a feasible technology to exercise skating during the off-season. While slide-board is much different from ice surface of the actual skating situation, it may distort actual skating posture. The purpose of this study was to analyze the differences in posture during push-off phase between an actual speed skating condition and on slideboard. The result showed that on the slide-board distance between two feet were shorter, so were the rotation angles of both feet, the hip angle was lower during the whole phase, while knee and ankle angles were higher. In conclusion, the restriction of the space on slide-board affected the position and rotation of both stable and push-off feet as well as the joint extension of the stable leg. Hence, the structural design of slide-board needs to be improved to facilitate the extension of knee and ankle in the medial-lateral direction
    corecore