4,093 research outputs found
Evaluation of Unmanned Aircraft Flying Qualities Using JSBSim
Flying qualities data can be used to predict the future performance of aircraft; however, no flying qualities requirements exist for Unmanned Aerial Vehicles (UAVs). The intent of flying qualities requirements is to guarantee the safety and operational effectiveness of the aircraft. Flying qualities requirements have been extensively researched and specified for fixed-wing and rotary-wing manned aircraft based on a substantial database of assessments. The critical issue today in flying qualities is how to extend them to pilotless aircraft. A simulation study using an open-source flight dynamics model (JSBSim) was conducted to perform various performance maneuvers and evaluate how well the aircraft followed the desired maneuver. Criteria from MIL-STD-1797 were used to evaluate the flying quality characteristics and compared to the simulation results. It was found that the application of manned criteria to autonomous UAVs did not provide an accurate depiction of its flying qualities. Instead the requirements should be focused on the closed-loop task evaluation and the limitations of the flight control system
Fabrication and Electric Field Dependent Transport Measurements of Mesoscopic Graphite Devices
We have developed a unique micromechanical method to extract extremely thin
graphite samples. Graphite crystallites with thicknesses ranging from 10 - 100
nm and lateral size 2 m are extracted from bulk. Mesoscopic
graphite devices are fabricated from these samples for electric field dependent
conductance measurements. Strong conductance modulation as a function of gate
voltage is observed in the thinner crystallite devices. The temperature
dependent resistivity measurements show more boundary scattering contribution
in the thinner graphite samples.Comment: 3 pages, 3 figures included, submitted to Appl. Phys. Let
Role for targeted resection in the multidisciplinary treatment of metastatic gastrointestinal stromal tumor
The management of advanced gastrointestinal stromal tumors (GISTs) has evolved in the modern era due to the discovery of c-kit mutations and the development of tyrosine kinase inhibitors (TKIs). Until the advent of TKIs such as imatinib, the median survival reported for patients with advanced GIST was 19 months. Although surgery is the treatment of choice for resectable primary GIST, its role in cases of recurrence and metastasis remains to be unclear. This review outlines the potential beneficial role of repeat surgical resection in the multidisciplinary treatment of advanced GIST in the era of TKIs
Modulation of Thermoelectric Power of Individual Carbon Nanotubes
Thermoelectric power (TEP) of individual single walled carbon nanotubes
(SWNTs) has been measured at mesoscopic scales using a microfabricated heater
and thermometers. Gate electric field dependent TEP-modulation has been
observed. The measured TEP of SWNTs is well correlated to the electrical
conductance across the SWNT according to the Mott formula. At low temperatures,
strong modulations of TEP were observed in the single electron conduction
limit. In addition, semiconducting SWNTs exhibit large values of TEP due to the
Schottky barriers at SWNT-metal junctions.Comment: to be published in Phys. Rev. Let
Recommended from our members
A conserved morphogenetic mechanism for epidermal ensheathment of nociceptive sensory neurites.
Interactions between epithelial cells and neurons influence a range of sensory modalities including taste, touch, and smell. Vertebrate and invertebrate epidermal cells ensheath peripheral arbors of somatosensory neurons, including nociceptors, yet the developmental origins and functional roles of this ensheathment are largely unknown. Here, we describe an evolutionarily conserved morphogenetic mechanism for epidermal ensheathment of somatosensory neurites. We found that somatosensory neurons in Drosophila and zebrafish induce formation of epidermal sheaths, which wrap neurites of different types of neurons to different extents. Neurites induce formation of plasma membrane phosphatidylinositol 4,5-bisphosphate microdomains at nascent sheaths, followed by a filamentous actin network, and recruitment of junctional proteins that likely form autotypic junctions to seal sheaths. Finally, blocking epidermal sheath formation destabilized dendrite branches and reduced nociceptive sensitivity in Drosophila. Epidermal somatosensory neurite ensheathment is thus a deeply conserved cellular process that contributes to the morphogenesis and function of nociceptive sensory neurons
Application of Polynomial Regression Model for Joint Stiffness
International Journal of Exercise Science 15(1): 1236-1245, 2022. Quasi-stiffness (joint stiffness) is often used to characterize leg properties during athletic and other activities and has been reported by a single slope of angle-moment curve. However, the joint angle-moment relationship of some relationship are not effectively represented by a simple linear regression model. Thus, the purpose of this analysis was to investigate the benefits of utilizing a 2nd order polynomial regression (quadratic) model as compared to the linear model when calculating lower extremity joint stiffness incorporating subdivided eccentric phases. Thirty healthy and active college students performed 15 drop jumps from a 30-cm platform. The eccentric phase was identified as the time from initial foot contact (IC) to the lowest vertical position of the center of mass and subdivided into the loading and attenuation phases, separated by the peak vertical ground reaction force. Lower extremity joint stiffnesses (hip, knee, and ankle) for the loading and attenuation phases were calculated using a linear and quadratic model. Multiple 2 by 2 repeated measures ANOVAs were performed. In the post-hoc analyses, the quadratic model had greater goodness-of-fit ( and RMSE) than the linear model (p \u3c .05) for all joints. The quadratic model revealed differences between the loading and attenuation phases for both hip (p = .001) and knee stiffness (p \u3c .001). These results suggest that the quadratic model is more representative of the angle-moment relationship while subdividing the eccentric phase of a drop jump into the loading and attenuation phases
The first reported case of a patient with pancreatic cancer treated with cone beam computed tomography-guided stereotactic adaptive radiotherapy (CT-STAR)
BACKGROUND: Online adaptive stereotactic radiotherapy allows for improved target and organ at risk (OAR) delineation and inter-fraction motion management via daily adaptive planning. The use of adaptive SBRT for the treatment of pancreatic cancer (performed until now using only MRI or CT on rails-guided adaptive radiotherapy), has yielded promising outcomes. Herein we describe the first reported case of cone beam CT-guided stereotactic adaptive radiotherapy (CT-STAR) for the treatment of pancreatic cancer.
CASE PRESENTATION: A 61-year-old female with metastatic pancreatic cancer presented for durable palliation of a symptomatic primary pancreatic mass. She was prescribed 35 Gy/5 fractions utilizing CT-STAR. The patient was simulated utilizing an end-exhale CT with intravenous and oral bowel contrast. Both initial as well as daily adapted plans were created adhering to a strict isotoxicity approach in which coverage was sacrificed to meet critical luminal gastrointestinal OAR hard constraints. Kilovoltage cone beam CTs were acquired on each day of treatment and the radiation oncologist edited OAR contours to reflect the patient\u27s anatomy-of-the-day. The initial and adapted plan were compared using dose volume histogram objectives, and the superior plan was delivered. Use of the initial treatment plan would have resulted in nine critical OAR hard constraint violations. The adapted plans achieved hard constraints in all five fractions for all four critical luminal gastrointestinal structures.
CONCLUSIONS: We report the successful treatment of a patient with pancreatic cancer treated with CT-STAR. Prior to this treatment, the delivery of ablative adaptive radiotherapy for pancreatic cancer was limited to clinics with MR-guided and CT-on-rails adaptive SBRT technology and workflows. CT-STAR is a promising modality with which to deliver stereotactic adaptive radiotherapy for pancreatic cancer
Electric Field Modulation of Galvanomagnetic Properties of Mesoscopic Graphite
Electric field effect devices based on mesoscopic graphite are fabricated for
galvanomagnetic measurements. Strong modulation of magneto-resistance and Hall
resistance as a function of gate voltage is observed as sample thickness
approaches the screening length. Electric field dependent Landau level
formation is detected from Shubnikov de Haas oscillations in
magneto-resistance. The effective mass of electron and hole carriers has been
measured from the temperature dependant behavior of these oscillations.Comment: 4 pages, 4 figures included, submitted to Phys. Rev. Let
- …