11,776 research outputs found

    Developing cultural competence in working with Korean immigrant families

    Get PDF
    The authors provide an in-depth examination of the historical background, cultural values, family roles, and community contexts of Korean Americans as an aid to both researchers and clinicians in developing cultural competence with this particular group. First, the concept of cultural competence is defined. A brief history of Korean immigration patterns to the United States and demographic information about Korean Americans are reviewed. Second, Korean cultural values, family structure, and family roles are examined as they impact relationships in research and clinical contexts. Three indigenous concepts (cf. L. Kim, 1992) that may be useful in developing cultural competence include haan (suppressed anger), jeong (strong feeling of kinship), and noon-chi (ability to evaluate social situations through implicit cues). Clinical case examples and accounts from a community-based research perspective illustrate these cultural values. Third, important community resources in the Korean American context are highlighted. Links between cultural competence and “ecological pragmatism ” (Kelly, Azelton, Burzette, & Mock, 1994) are discussed. © 2006 Wiley Periodicals, Inc

    Phosphorylation of the RB C-terminus regulates condensin II release from chromatin

    Get PDF
    The retinoblastoma tumor suppressor protein (RB) plays an important role in biological processes such as cell cycle control, DNA damage repair, epigenetic regulation, and genome stability. The canonical model of RB regulation is that cyclin-CDKs phosphorylate and render RB inactive in late G1/S, promoting entry into S phase. Recently, monophosphorylated RB species were described to have distinct cell-cycle-independent functions, suggesting that a phosphorylation code dictates diversity of RB function. However, a biologically relevant, functional role of RB phosphorylation at non-CDK sites has remained elusive. Here, we investigated S838/T841 dual phosphorylation, its upstream stimulus, and downstream functional output. We found that mimicking T-cell receptor activation in Jurkat leukemia cells induced sequential activation of downstream kinases including p38 MAPK and RB S838/ T841 phosphorylation. This signaling pathway disrupts RB and condensin II interaction with chromatin. Using cells expressing a WT or S838A/T841A mutant RB fragment, we present evidence that deficiency for this phosphorylation event prevents condensin II release from chromatin

    Interfacial Reactions of Ozone with Surfactant Protein B in a Model Lung Surfactant System

    Get PDF
    Oxidative stresses from irritants such as hydrogen peroxide and ozone (O_3) can cause dysfunction of the pulmonary surfactant (PS) layer in the human lung, resulting in chronic diseases of the respiratory tract. For identification of structural changes of pulmonary surfactant protein B (SP-B) due to the heterogeneous reaction with O_3, field-induced droplet ionization (FIDI) mass spectrometry has been utilized. FIDI is a soft ionization method in which ions are extracted from the surface of microliter-volume droplets. We report structurally specific oxidative changes of SP-B_(1−25) (a shortened version of human SP-B) at the air−liquid interface. We also present studies of the interfacial oxidation of SP-B_(1−25) in a nonionizable 1-palmitoyl-2-oleoyl-sn-glycerol (POG) surfactant layer as a model PS system, where competitive oxidation of the two components is observed. Our results indicate that the heterogeneous reaction of SP-B_(1−25) at the interface is quite different from that in the solution phase. In comparison with the nearly complete homogeneous oxidation of SP-B_(1−25), only a subset of the amino acids known to react with ozone are oxidized by direct ozonolysis in the hydrophobic interfacial environment, both with and without the lipid surfactant layer. Combining these experimental observations with the results of molecular dynamics simulations provides an improved understanding of the interfacial structure and chemistry of a model lung surfactant system subjected to oxidative stress

    Chemistry and radiative shielding in star forming galactic disks

    Full text link
    To understand the conditions under which dense, molecular gas is able to form within a galaxy, we post-process a series of three-dimensional galactic-disk-scale simulations with ray-tracing based radiative transfer and chemical network integration to compute the equilibrium chemical and thermal state of the gas. In performing these simulations we vary a number of parameters, such as the ISRF strength, vertical scale height of stellar sources, cosmic ray flux, to gauge the sensitivity of our results to these variations. Self-shielding permits significant molecular hydrogen (H2) abundances in dense filaments around the disk midplane, accounting for approximately ~10-15% of the total gas mass. Significant CO fractions only form in the densest, n>~10^3 cm^-3, gas where a combination of dust, H2, and self-shielding attenuate the FUV background. We additionally compare these ray-tracing based solutions to photochemistry with complementary models where photo-shielding is accounted for with locally computed prescriptions. With some exceptions, these local models for the radiative shielding length perform reasonably well at reproducing the distribution and amount of molecular gas as compared with a detailed, global ray tracing calculation. Specifically, an approach based on the Jeans Length with a T=40K temperature cap performs the best in regards to a number of different quantitative measures based on the H2 and CO abundances.Comment: 21 Pages, 15 figures. Submitted to MNRAS. Comments welcom

    Electronic Voting Service Using Block-Chain

    Get PDF
    Cryptocurrency, and its underlying technologies, has been gaining popularity for transaction management beyond financial transactions. Transaction information is maintained in the block-chain, which can be used to audit the integrity of the transaction. The focus on this paper is the potential availability of block-chain technology of other transactional uses. Block-chain is one of the most stable open ledgers that preserves transaction information, and is difficult to forge. Since the information stored in block-chain is not related to personally identify information, it has the characteristics of anonymity. Also, the block-chain allows for transparent transaction verification since all information in the block-chain is open to the public. These characteristics are the same as the requirements for a voting system. That is, strong robustness, anonymity, and transparency. In this paper, we propose an electronic voting system as an application of block-chain, and describe block-chain based voting at a national level through examples

    A microfluidic-based bubble generation platform enables analysis of physical property change in phospholipid surfactant layers by interfacial ozone reaction

    Get PDF
    The air-liquid interface filled with pulmonary surfactant is a unique feature of our lung alveoli. The mechanical properties of this interface play an important role in breathing and its malfunction induced by an environmental hazard, such as ozone, relates to various lung diseases. In order to understand the interfacial physics of the pulmonary surfactant system, we employed a microfluidic bubble generation platform with a model pulmonary surfactant composed of two major phospholipids: DPPC (1,2-dipalmitoyl-sn-phosphatidylcholine) and POPG (1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol). With fluorescence imaging, we observed the ozone-induced chemical modification of the unsaturated lipid component of the lipid mixture, POPG. This chemical change due to the oxidative stress was further utilized to study the physical characteristics of the interface through the bubble formation process. The physical property change was evaluated through the oscillatory behaviour of the monolayer, as well as the bubble size and formation time. The results presented demonstrate the potential of this platform to study interfacial physics of lung surfactant system under various environmental challenges, both qualitatively and quantitatively

    Patterns and rates of viral evolution in HIV-1 subtype B infected females and males.

    Get PDF
    Biological sex differences affect the course of HIV infection, with untreated women having lower viral loads compared to their male counterparts but, for a given viral load, women have a higher rate of progression to AIDS. However, the vast majority of data on viral evolution, a process that is clearly impacted by host immunity and could be impacted by sex differences, has been derived from men. We conducted an intensive analysis of HIV-1 gag and env-gp120 evolution taken over the first 6-11 years of infection from 8 Women's Interagency HIV Study (WIHS) participants who had not received combination antiretroviral therapy (ART). This was compared to similar data previously collected from men, with both groups infected with HIV-1 subtype B. Early virus populations in men and women were generally homogenous with no differences in diversity between sexes. No differences in ensuing nucleotide substitution rates were found between the female and male cohorts studied herein. As previously reported for men, time to peak diversity in env-gp120 in women was positively associated with time to CD4+ cell count below 200 (P = 0.017), and the number of predicted N-linked glycosylation sites generally increased over time, followed by a plateau or decline, with the majority of changes localized to the V1-V2 region. These findings strongly suggest that the sex differences in HIV-1 disease progression attributed to immune system composition and sensitivities are not revealed by, nor do they impact, global patterns of viral evolution, the latter of which proceeds similarly in women and men

    Anti-Forensic Trace Detection in Digital Forensic Triage Investigations

    Get PDF
    Anti-forensics, whether intentionally to disrupt investigations or simply an effort to make a computer system run better, is becoming of increasing concern to digital investigators. This work attempts to assess the problem of anti-forensics techniques commonly deployed in South Korea. Based on identified challenges, a method of signature-based anti-forensic trace detection is proposed for triage purposes that will assist investigators in quickly making decisions about the suspect digital devices before conducting a full investigation. Finally, a prototype anti-forensic trace detection system is given to demonstrate the practicality of the proposed method
    corecore