4 research outputs found
Recommended from our members
A personal glucose meter-utilized strategy for portable and label-free detection of hydrogen peroxide
Rapid and precise detection of hydrogen peroxide (H2O2) holds great significance since it is linked to numerous physiological and inorganic catalytic processes. We herein developed a label-free and washing-free strategy to detect H2O2 by employing a hand-held personal glucose meter (PGM) as a signal readout device. By focusing on the fact that the reduced redox mediator ([Fe(CN)6]4-) itself is responsible for the final PGM signal, we developed a new PGM-based strategy to detect H2O2 by utilizing the target H2O2-mediated oxidation of [Fe(CN)6]4- to [Fe(CN)6]3- in the presence of horseradish peroxidase (HRP) and monitoring the reduced PGM signal in response to the target amount. Based on this straightforward and facile design principle, H2O2 was successfully determined down to 3.63 μM with high specificity against various non-target molecules. We further demonstrated that this strategy could be expanded to identify another model target choline by detecting H2O2 produced through its oxidation promoted by choline oxidase. Moreover, we verified its practical applicability by reliably determining extracellular H2O2 released from the breast cancer cell line, MDA-MB-231. This work could evolve into versatile PGM-based platform technology to identify various non-glucose target molecules by employing their corresponding oxidase enzymes, greatly advancing the portable biosensing technologies
Recommended from our members
Multifunctional self-priming hairpin probe-based isothermal nucleic acid amplification and its applications for COVID-19 diagnosis
We herein present a multifunctional self-priming hairpin probe-based isothermal amplification, termed MSH, enabling one-pot detection of target nucleic acids. The sophisticatedly designed multifunctional self-priming hairpin (MSH) probe recognizes the target and rearranges to prime itself, triggering the amplification reaction powered by the continuously repeated extension, nicking, and target recycling. As a consequence, a large number of double-stranded DNA (dsDNA) amplicons are produced that could be monitored in real-time using a dsDNA-intercalating dye. Based on this unique design approach, the nucleocapsid (N) and the open reading frame 1 ab (ORF1ab) genes of SARS-CoV-2 were successfully detected down to 1.664 fM and 0.770 fM, respectively. The practical applicability of our method was validated by accurately diagnosing 60 clinical samples with 93.33% sensitivity and 96.67% specificity. This isothermal one-pot MSH technique holds great promise as a point-of-care testing protocol for the reliable detection of a wide spectrum of pathogens, particularly in resource-limited settings
Recommended from our members
Click chemistry-mediated enrichment of circulating tumor cells and tumor-derived extracellular vesicles for dual liquid biopsy in differentiated thyroid cancer
Circulating tumor cells (CTCs) and tumor-derived extracellular vesicles (tEVs) are two crucial methodologies of liquid biopsy. Given their distinct size differences and release dynamics, CTCs and tEVs potentially offer synergistic capabilities in the non-invasive detection of differentiated thyroid cancer (DTC), a typically indolent tumor. We present the Combined DTC CTC/tEV Assay, integrating dual liquid biopsy processes: i) DTC CTC enrichment by Click Chips, followed by analysis of seven DTC-specific genes, and ii) DTC tEV enrichment by Click Beads, succeeded by mRNA cargo quantification in DTC tEVs. This method utilizes click chemistry, leveraging a pair of biorthogonal and highly reactive functional motifs (tetrazine, Tz, and trans-cyclooctene, TCO), to overcome the challenges encountered in the conventional immunoaffinity-based enrichment of CTCs and tEVs. The Combined DTC CTC/tEV Assay synergistically combines the diagnostic precision of CTCs with the sensitivity of tEVs, demonstrating superior diagnostic accuracy in DTC detection and boasting an AUROC of 0.99. This outperforms the individual diagnostic performance of using either DTC CTC or DTC tEV alone. This integration enables full utilization of a patient's blood sample, and marks a significant evolution in the development of nanomaterial-based liquid biopsy technologies to address challenging unmet clinical needs in cancer care
Recommended from our members
HCC EV ECG score: An extracellular vesicle-based protein assay for detection of early-stage hepatocellular carcinoma.
BACKGROUND AND AIMS: The sensitivity of current surveillance methods for detecting early-stage hepatocellular carcinoma (HCC) is suboptimal. Extracellular vesicles (EVs) are promising circulating biomarkers for early cancer detection. In this study, we aim to develop an HCC EV-based surface protein assay for early detection of HCC. APPROACH AND RESULTS: Tissue microarray was used to evaluate four potential HCC-associated protein markers. An HCC EV surface protein assay, composed of covalent chemistry-mediated HCC EV purification and real-time immuno-polymerase chain reaction readouts, was developed and optimized for quantifying subpopulations of EVs. An HCC EV ECG score, calculated from the readouts of three HCC EV subpopulations ( E pCAM + CD63 + , C D147 + CD63 + , and G PC3 + CD63 + HCC EVs), was established for detecting early-stage HCC. A phase 2 biomarker study was conducted to evaluate the performance of ECG score in a training cohort ( n = 106) and an independent validation cohort ( n = 72).Overall, 99.7% of tissue microarray stained positive for at least one of the four HCC-associated protein markers (EpCAM, CD147, GPC3, and ASGPR1) that were subsequently validated in HCC EVs. In the training cohort, HCC EV ECG score demonstrated an area under the receiver operating curve (AUROC) of 0.95 (95% confidence interval [CI], 0.90-0.99) for distinguishing early-stage HCC from cirrhosis with a sensitivity of 91% and a specificity of 90%. The AUROCs of the HCC EV ECG score remained excellent in the validation cohort (0.93; 95% CI, 0.87-0.99) and in the subgroups by etiology (viral: 0.95; 95% CI, 0.90-1.00; nonviral: 0.94; 95% CI, 0.88-0.99). CONCLUSION: HCC EV ECG score demonstrated great potential for detecting early-stage HCC. It could augment current surveillance methods and improve patients outcomes