173 research outputs found

    Assessment of Nondestructive Testing Technologies for Quality Control/Quality Assurance of Asphalt Mixtures

    Get PDF
    Asphalt pavements suffer various failures due to insufficient quality within their design lives. The American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG) has been proposed to improve pavement quality through quantitative performance prediction. Evaluation of the actual performance (quality) of pavements requires in situ nondestructive testing (NDT) techniques that can accurately measure the most critical, objective, and sensitive properties of pavement systems. The purpose of this study is to assess existing as well as promising new NDT technologies for quality control/quality assurance (QC/QA) of asphalt mixtures. Specifically, this study examined field measurements of density via the PaveTracker electromagnetic gage, shear-wave velocity via surface-wave testing methods, and dynamic stiffness via the Humboldt GeoGauge for five representative paving projects covering a range of mixes and traffic loads. The in situ tests were compared against laboratory measurements of core density and dynamic modulus. The in situ PaveTracker density had a low correlation with laboratory density and was not sensitive to variations in temperature or asphalt mix type. The in situ shear-wave velocity measured by surface-wave methods was most sensitive to variations in temperature and asphalt mix type. The in situ density and in situ shear-wave velocity were combined to calculate an in situ dynamic modulus, which is a performance-based quality measurement. The in situ GeoGauge stiffness measured on hot asphalt mixtures several hours after paving had a high correlation with the in situ dynamic modulus and the laboratory density, whereas the stiffness measurement of asphalt mixtures cooled with dry ice or at ambient temperature one or more days after paving had a very low correlation with the other measurements. To transform the in situ moduli from surface-wave testing into quantitative quality measurements, a QC/QA procedure was developed to first correct the in situ moduli measured at different field temperatures to the moduli at a common reference temperature based on master curves from laboratory dynamic modulus tests. The corrected in situ moduli can then be compared against the design moduli for an assessment of the actual pavement performance. A preliminary study of microelectromechanical systems- (MEMS)-based sensors for QC/QA and health monitoring of asphalt pavements was also performed

    Weak Hadley cell intensity changes due to compensating effects of tropical and extratropical radiative forcing

    Get PDF
    The Hadley cell response to globally increasing CO2 concentrations is spatially complex, with an intensified rising branch and weakened descending branch. To better understand these changes, we examine the sensitivity of the Hadley cell to idealized radiative forcing in different latitude bands. The Hadley cell response is, to first order, governed by the latitudinal structure of the forcing. The strengthening of the upward branch is attributed to tropical forcing, whereas the weakening of the descending branch is attributed to extratropical forcing. These direct radiatively-forced Hadley cell responses are amplified by changes in atmospheric eddy heat transport while being partially offset by changes in gross moist stability and ocean heat uptake. The radiative feedbacks further modulate the Hadley cell response by altering the meridional atmospheric energy gradient. The Hadley cell projections under global warming are thus a result of opposing - and thus compensating - effects from tropical and extratropical radiative forcings

    Does an Eye Tracker Tell the Truth About Visualizations?: Findings While Investigating Visualizations for Decision Making

    Get PDF
    For information visualization researchers, eye tracking has been a useful tool to investigate research participants’ underlying cognitive processes by tracking their eye movements while they interact with visual techniques. We used an eye tracker to better understand why participants with a variant of a tabular visualization called ‘SimulSort’ outperformed ones with a conventional table and typical one-column sorting feature (i.e., Typical Sorting). The collected eye-tracking data certainly shed light on the detailed cognitive processes of the participants; SimulSort helped with decision-making tasks by promoting efficient browsing behavior and compensatory decision-making strategies. However, more interestingly, we also found unexpected eye-tracking patterns with Simul- Sort. We investigated the cause of the unexpected patterns through a crowdsourcing-based study (i.e., Experiment 2), which elicited an important limitation of the eye tracking method: incapability of capturing peripheral vision. This particular result would be a caveat for other visualization researchers who plan to use an eye tracker in their studies. In addition, the method to use a testing stimulus (i.e., influential column) in Experiment 2 to verify the existence of such limitations would be useful for researchers who would like to verify their eye tracking results

    Acute Liver Failure Secondary to Hepatic Infiltration of Malignant Melanoma

    Get PDF
    Acute liver failure due to malignant melanoma is uncommon. We presents a case of acute liver failure secondary to hepatic infiltration of a malignant melanoma. An 86-year-old man was admitted with elevated liver enzymes and an increased lactate dehydrogenase level. His condition progressed to acute liver failure, but the etiology of liver failure was unclear. Esophagogastroduodenoscopy was performed to evaluate dyspepsia, which showed signs indicative of malignant melanoma. Based on the endoscopy findings and elevated liver enzyme levels, liver biopsy was performed to confirm the presence of malignant melanoma. Hepatic infiltration of malignant melanoma was observed histologically. However, massive and diffuse liver metastasis is very rare and difficult to identify on imaging studies. If the etiology of liver failure is unclear, diffuse metastatic melanoma infiltration should be considered as differential diagnosis. Early liver biopsy can help to clarify the diagnosis

    Walker circulation response to extratropical radiative forcing

    Get PDF
    Walker circulation variability and associated zonal shifts in the heating of the tropical atmosphere have far-reaching global impacts well into high latitudes. Yet the reversed high latitude-to-Walker circulation teleconnection is not fully understood. Here, we reveal the dynamical pathways of this teleconnection across different components of the climate system using a hierarchy of climate model simulations. In the fully coupled system with ocean circulation adjustments, the Walker circulation strengthens in response to extratropical radiative cooling of either hemisphere, associated with the upwelling of colder subsurface water in the eastern equatorial Pacific. By contrast, in the absence of ocean circulation adjustments, the Walker circulation response is sensitive to the forcing hemisphere, due to the blocking effect of the northward-displaced climatological intertropical convergence zone and shortwave cloud radiative effects. Our study implies that energy biases in the extratropics can cause pronounced changes of tropical climate patterns

    Probabilistic Naming of Functions in Stripped Binaries

    Get PDF
    Debugging symbols in binary executables carry the names of functions and global variables. When present, they greatly simplify the process of reverse engineering, but they are almost always removed (stripped) for deployment. We present the design and implementation of punstrip, a tool which combines a probabilistic fingerprint of binary code based on high-level features with a probabilistic graphical model to learn the relationship between function names and program structure. As there are many naming conventions and developer styles, functions from different applications do not necessarily have the exact same name, even if they implement the exact same functionality. We therefore evaluate punstrip across three levels of name matching: exact; an approach based on natural language processing of name components; and using Symbol2Vec, a new embedding of function names based on random walks of function call graphs. We show that our approach is able to recognize functions compiled across different compilers and optimization levels and then demonstrate that punstrip can predict semantically similar function names based on code structure. We evaluate our approach over open source C binaries from the Debian Linux distribution and compare against the state of the art

    A promising Na3V2(PO4)(3) cathode for use in the construction of high energy batteries

    Get PDF
    High-energy batteries need significant cathodes which can simultaneously provide large specific capacities and high discharge plateaus. NASICON-structured Na3V2(PO4)3 (NVP) has been utilised as a promising cathode to meet this requirement and be used in the construction of high energy batteries. For a hybrid-ion battery by employing metallic lithium as an anode, NVP exhibits an initial specific capacity of 170 mA h g 1 in the voltage range of 1.6–4.8 V with a long discharge plateau around 3.7 V. Three Na(2) sites for NVP are found capable to be utilised through the application of a wide voltage window but only two of them are able to undergo ions exchange to produce a NaLi2V2(PO4)3 phase. However, a hybrid-ion migration mechanism is suggested to exist to describe the whole ion transport in which the effects of a Na-ion ‘‘barrier’’ results in a lowered ion diffusion rate and observed specific capacity. 1. Introduction Lithium-ion battery (LIB) technology is critically needed for many applications in a plethora of industries and is an important energystorage solution which can be potentially applied, for instance into electric vehicles (EVs).1,2 However, LIB has continued to be primarily relegated by the electronics market mainly due to its cost and material issues3 and the lack of high-performance cathode materials have become a technological bottleneck for the commercial development of advanced LIB.4 Particularly for the entrance of LIB into high energy fields, such as EVs and renewable energy storage in smart grids, the demand for highcapacity and voltage cathodes is starting to become a key focus of research. In the search for new positive-electrode materials for LIB, recent research has focused upon nano-structured lithium transitional-metal phosphates that exhibit desirable properties such as high energy storage capacities combined with electrochemical stability.5,6 Olivine LiFePO4,7 as one member of this class, has risen to prominence so far due to other characteristics involving low cost, low environmental impact and safety, which ar
    corecore