214,044 research outputs found

    Implicit Filter Sparsification In Convolutional Neural Networks

    No full text
    We show implicit filter level sparsity manifests in convolutional neural networks (CNNs) which employ Batch Normalization and ReLU activation, and are trained with adaptive gradient descent techniques and L2 regularization or weight decay. Through an extensive empirical study (Mehta et al., 2019) we hypothesize the mechanism behind the sparsification process, and find surprising links to certain filter sparsification heuristics proposed in literature. Emergence of, and the subsequent pruning of selective features is observed to be one of the contributing mechanisms, leading to feature sparsity at par or better than certain explicit sparsification / pruning approaches. In this workshop article we summarize our findings, and point out corollaries of selective-featurepenalization which could also be employed as heuristics for filter prunin

    Quaternion Electromagnetism and the Relation with 2-Spinor Formalism

    Full text link
    By using complex quaternion, which is the system of quaternion representation extended to complex numbers, we show that the laws of electromagnetism can be expressed much more simply and concisely. We also derive the quaternion representation of rotations and boosts from the spinor representation of Lorentz group. It is suggested that the imaginary 'i' should be attached to the spatial coordinates, and observe that the complex conjugate of quaternion representation is exactly equal to parity inversion of all physical quantities in the quaternion. We also show that using quaternion is directly linked to the two-spinor formalism. Finally, we discuss meanings of quaternion, octonion and sedenion in physics as n-fold rotationComment: Version published in journal Universe (2019

    Glassy dynamics of partially pinned fluids: an alternative mode-coupling approach

    Full text link
    We use a simple mode-coupling approach to investigate glassy dynamics of partially pinned fluid systems. Our approach is different from the mode-coupling theory developed by Krakoviack [Phys. Rev. Lett. 94, 065703 (2005), Phys. Rev. E 84, 050501(R) (2011)]. In contrast to Krakoviack's theory, our approach predicts a random pinning glass transition scenario that is qualitatively the same as the scenario obtained using a mean-field analysis of the spherical p-spin model and a mean-field version of the random first-order transition theory. We use our approach to calculate quantities which are often considered to be indicators of growing dynamic correlations and static point-to-set correlations. We find that the so-called static overlap is dominated by the simple, low pinning fraction contribution. Thus, at least for randomly pinned fluid systems, only a careful quantitative analysis of simulation results can reveal genuine, many-body point-to-set correlations

    20 K superconductivity in heavily electron doped surface layer of FeSe bulk crystal

    Full text link
    A superconducting transition temperature Tc as high as 100 K was recently discovered in 1 monolayer (1ML) FeSe grown on SrTiO3 (STO). The discovery immediately ignited efforts to identify the mechanism for the dramatically enhanced Tc from its bulk value of 7 K. Currently, there are two main views on the origin of the enhanced Tc; in the first view, the enhancement comes from an interfacial effect while in the other it is from excess electrons with strong correlation strength. The issue is controversial and there are evidences that support each view. Finding the origin of the Tc enhancement could be the key to achieving even higher Tc and to identifying the microscopic mechanism for the superconductivity in iron-based materials. Here, we report the observation of 20 K superconductivity in the electron doped surface layer of FeSe. The electronic state of the surface layer possesses all the key spectroscopic aspects of the 1ML FeSe on STO. Without any interface effect, the surface layer state is found to have a moderate Tc of 20 K with a smaller gap opening of 4 meV. Our results clearly show that excess electrons with strong correlation strength alone cannot induce the maximum Tc, which in turn strongly suggests need for an interfacial effect to reach the enhanced Tc found in 1ML FeSe/STO.Comment: 5 pages, 4 figure
    corecore