333 research outputs found

    Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells

    Get PDF
    AbstractExosomes have recently come into focus as "natural nanoparticles" for use as drug delivery vehicles. Our objective was to assess the feasibility of an exosome-based drug delivery platform for a potent chemotherapeutic agent, paclitaxel (PTX), to treat MDR cancer. Herein, we developed different methods of loading exosomes released by macrophages with PTX (exoPTX), and characterized their size, stability, drug release, and in vitro antitumor efficacy. Reformation of the exosomal membrane upon sonication resulted in high loading efficiency and sustained drug release. Importantly, incorporation of PTX into exosomes increased cytotoxicity more than 50 times in drug resistant MDCKMDR1 (Pgp+) cells. Next, our studies demonstrated a nearly complete co-localization of airway-delivered exosomes with cancer cells in a model of murine Lewis lung carcinoma pulmonary metastases, and a potent anticancer effect in this mouse model. We conclude that exoPTX holds significant potential for the delivery of various chemotherapeutics to treat drug resistant cancers.From the Clinical EditorExosomes are membrane-derived natural vesicles of ~40 - 200 nm size. They have been under extensive research as novel drug delivery vehicles. In this article, the authors developed exosome-based system to carry formulation of PTX and showed efficacy in the treatment of multi-drug resistant cancer cells. This novel system may be further developed to carry other chemotherapeutic agents in the future

    CSF Bypass Surgery in Children with Hydrocephalus: Modern Possibilities, Prospects and Ways of Solving the Correction of Complications

    Get PDF
    The chapter discusses modern and promising approaches to the use of CSF shunting operations in children. CSF shunting operations remain the only effective method for correcting persistent CSF circulation disorders in CSF resorption disorders with the development of intracranial hypertension and hydrocephalus. The chapter is devoted to general ideas about CSF dynamics and biomechanical properties of the craniospinal system that affect CSF dynamics, and gives a pathogenetic assessment of CSF dynamics in the development of intracranial hypertension and hydrocephalus. Aspects of genetics and genomics of anomalies in hydrocephalus are touched upon. Pathological changes in the brain around old ventricular shunts are described. The authors consider the types of CSF shunting operations for hydrocephalus in children. Possible complications of CSF shunting operations are analyzed with the algorithm for their correction and management tactics for this group of patients

    Effect of fluorosubstitution on the structure of single crystals, Effect of fluorosubstitution on the structure of single crystals,thin films and spectral properties of palladium phthalocyanines

    Get PDF
    In this work, the crystalline structure of single crystals grown by vacuum sublimation of unsubstituted palladium phthalocyanines (PdPc), its tetrafluorinated (PdPcF4) and hexadecafluorinated (PdPcF16) derivatives have been investigated using X-ray diffraction measurements. Two crystalline phases have been identified for PdPc; the molecules in both phases crystallize in stacks with herringbone arrangement in the monoclinic space groups (C2/c for -PdPc; P21/n for -PdPc). Both PdPcF4 and PdPcF16 crystallize in the triclinic P-1 space group, forming stacks of molecules in columnar arrangement with molecules in adjacent columns are aligned parallel to one another. X-ray diffraction measurements have also been used to elucidate the structural features and molecular orientation of thin films of PdPc, PdPcF4 and PdPcF16, grown by organic molecular beam deposition at different substrate temperatures. The effect of fluorosubstitution on UV-visible optical absorption and vibrational spectra of palladium phthalocyanine derivatives is also discussed

    Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure

    Get PDF
    ntrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters

    Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000–2021: a systematic analysis from the Global Burden of Disease Study 2021

    Get PDF
    Background Previous global analyses, with known underdiagnosis and single cause per death attribution systems, provide only a small insight into the suspected high population health effect of sickle cell disease. Completed as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021, this study delivers a comprehensive global assessment of prevalence of sickle cell disease and mortality burden by age and sex for 204 countries and territories from 2000 to 2021. Methods We estimated cause-specific sickle cell disease mortality using standardised GBD approaches, in which each death is assigned to a single underlying cause, to estimate mortality rates from the International Classification of Diseases (ICD)-coded vital registration, surveillance, and verbal autopsy data. In parallel, our goal was to estimate a more accurate account of sickle cell disease health burden using four types of epidemiological data on sickle cell disease: birth incidence, age-specific prevalence, with-condition mortality (total deaths), and excess mortality (excess deaths). Systematic reviews, supplemented with ICD-coded hospital discharge and insurance claims data, informed this modelling approach. We employed DisMod-MR 2.1 to triangulate between these measures—borrowing strength from predictive covariates and across age, time, and geography—and generated internally consistent estimates of incidence, prevalence, and mortality for three distinct genotypes of sickle cell disease: homozygous sickle cell disease and severe sickle cell β-thalassaemia, sickle-haemoglobin C disease, and mild sickle cell β-thalassaemia. Summing the three models yielded final estimates of incidence at birth, prevalence by age and sex, and total sickle cell disease mortality, the latter of which was compared directly against cause-specific mortality estimates to evaluate differences in mortality burden assessment and implications for the Sustainable Development Goals (SDGs). Findings Between 2000 and 2021, national incidence rates of sickle cell disease were relatively stable, but total births of babies with sickle cell disease increased globally by 13·7% (95% uncertainty interval 11·1–16·5), to 515 000 (425 000–614 000), primarily due to population growth in the Caribbean and western and central sub-Saharan Africa. The number of people living with sickle cell disease globally increased by 41·4% (38·3–44·9), from 5·46 million (4·62–6·45) in 2000 to 7·74 million (6·51–9·2) in 2021. We estimated 34 400 (25 000–45 200) cause-specific all-age deaths globally in 2021, but total sickle cell disease mortality burden was nearly 11-times higher at 376 000 (303 000–467 000). In children younger than 5 years, there were 81 100 (58 800–108 000) deaths, ranking total sickle cell disease mortality as 12th (compared to 40th for cause-specific sickle cell disease mortality) across all causes estimated by the GBD in 2021. Interpretation Our findings show a strikingly high contribution of sickle cell disease to all-cause mortality that is not apparent when each death is assigned to only a single cause. Sickle cell disease mortality burden is highest in children, especially in countries with the greatest under-5 mortality rates. Without comprehensive strategies to address morbidity and mortality associated with sickle cell disease, attainment of SDG 3.1, 3.2, and 3.4 is uncertain. Widespread data gaps and correspondingly high uncertainty in the estimates highlight the urgent need for routine and sustained surveillance efforts, further research to assess the contribution of conditions associated with sickle cell disease, and widespread deployment of evidence-based prevention and treatment for those with sickle cell disease.publishedVersio

    Physiological Correlates of Volunteering

    Get PDF
    We review research on physiological correlates of volunteering, a neglected but promising research field. Some of these correlates seem to be causal factors influencing volunteering. Volunteers tend to have better physical health, both self-reported and expert-assessed, better mental health, and perform better on cognitive tasks. Research thus far has rarely examined neurological, neurochemical, hormonal, and genetic correlates of volunteering to any significant extent, especially controlling for other factors as potential confounds. Evolutionary theory and behavioral genetic research suggest the importance of such physiological factors in humans. Basically, many aspects of social relationships and social activities have effects on health (e.g., Newman and Roberts 2013; Uchino 2004), as the widely used biopsychosocial (BPS) model suggests (Institute of Medicine 2001). Studies of formal volunteering (FV), charitable giving, and altruistic behavior suggest that physiological characteristics are related to volunteering, including specific genes (such as oxytocin receptor [OXTR] genes, Arginine vasopressin receptor [AVPR] genes, dopamine D4 receptor [DRD4] genes, and 5-HTTLPR). We recommend that future research on physiological factors be extended to non-Western populations, focusing specifically on volunteering, and differentiating between different forms and types of volunteering and civic participation

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background Osteoarthritis is the most common form of arthritis in adults, characterised by chronic pain and loss of mobility. Osteoarthritis most frequently occurs after age 40 years and prevalence increases steeply with age. WHO has designated 2021–30 the decade of healthy ageing, which highlights the need to address diseases such as osteoarthritis, which strongly affect functional ability and quality of life. Osteoarthritis can coexist with, and negatively effect, other chronic conditions. Here we estimate the burden of hand, hip, knee, and other sites of osteoarthritis across geographies, age, sex, and time, with forecasts of prevalence to 2050. Methods In this systematic analysis for the Global Burden of Disease Study, osteoarthritis prevalence in 204 countries and territories from 1990 to 2020 was estimated using data from population-based surveys from 26 countries for knee osteoarthritis, 23 countries for hip osteoarthritis, 42 countries for hand osteoarthritis, and US insurance claims for all of the osteoarthritis sites, including the other types of osteoarthritis category. The reference case definition was symptomatic, radiographically confirmed osteoarthritis. Studies using alternative definitions from the reference case definition (for example self-reported osteoarthritis) were adjusted to reference using regression models. Osteoarthritis severity distribution was obtained from a pooled meta-analysis of sources using the Western Ontario and McMaster Universities Arthritis Index. Final prevalence estimates were multiplied by disability weights to calculate years lived with disability (YLDs). Prevalence was forecast to 2050 using a mixed-effects model. Findings Globally, 595 million (95% uncertainty interval 535–656) people had osteoarthritis in 2020, equal to 7·6% (95% UI 6·8–8·4) of the global population, and an increase of 132·2% (130·3–134·1) in total cases since 1990. Compared with 2020, cases of osteoarthritis are projected to increase 74·9% (59·4–89·9) for knee, 48·6% (35·9–67·1) for hand, 78·6% (57·7–105·3) for hip, and 95·1% (68·1–135·0) for other types of osteoarthritis by 2050. The global age-standardised rate of YLDs for total osteoarthritis was 255·0 YLDs (119·7–557·2) per 100 000 in 2020, a 9·5% (8·6–10·1) increase from 1990 (233·0 YLDs per 100 000, 109·3–510·8). For adults aged 70 years and older, osteoarthritis was the seventh ranked cause of YLDs. Age-standardised prevalence in 2020 was more than 5·5% in all world regions, ranging from 5677·4 (5029·8–6318·1) per 100 000 in southeast Asia to 8632·7 (7852·0–9469·1) per 100 000 in high-income Asia Pacific. Knee was the most common site for osteoarthritis. High BMI contributed to 20·4% (95% UI –1·7 to 36·6) of osteoarthritis. Potentially modifiable risk factors for osteoarthritis such as recreational injury prevention and occupational hazards have not yet been explored in GBD modelling. Interpretation Age-standardised YLDs attributable to osteoarthritis are continuing to rise and will lead to substantial increases in case numbers because of population growth and ageing, and because there is no effective cure for osteoarthritis. The demand on health systems for care of patients with osteoarthritis, including joint replacements, which are highly effective for late stage osteoarthritis in hips and knees, will rise in all regions, but might be out of reach and lead to further health inequity for individuals and countries unable to afford them. Much more can and should be done to prevent people getting to that late stage

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    corecore