1,306 research outputs found

    High Resolution Ionization of Ultracold Neutral Plasmas

    Full text link
    Collective effects, such as waves and instabilities, are integral to our understanding of most plasma phenomena. We have been able to study these in ultracold neutral plasmas by shaping the initial density distribution through spatial modulation of the ionizing laser intensity. We describe a relay imaging system for the photoionization beam that allows us to create higher resolution features and its application to extend the observation of ion acoustic waves to shorter wavelengths. We also describe the formation of sculpted density profiles to create fast expansion of plasma into vacuum and streaming plasmas

    Probing Nonlocal Spatial Correlations in Quantum Gases with Ultra-long-range Rydberg Molecules

    Full text link
    We present photo-excitation of ultra-long-range Rydberg molecules as a probe of spatial correlations in quantum gases. Rydberg molecules can be created with well-defined internuclear spacing, set by the radius of the outer lobe of the Rydberg electron wavefunction RnR_n. By varying the principal quantum number nn of the target Rydberg state, the molecular excitation rate can be used to map the pair-correlation function of the trapped gas g(2)(Rn)g^{(2)}(R_n). We demonstrate this with ultracold Sr gases and probe pair-separation length scales ranging from Rn=1400−3200R_n = 1400 - 3200 a0a_0, which are on the order of the thermal de Broglie wavelength for temperatures around 1 μ\muK. We observe bunching for a single-component Bose gas of 84^{84}Sr and anti-bunching due to Pauli exclusion at short distances for a polarized Fermi gas of 87^{87}Sr, revealing the effects of quantum statistics.Comment: 6 pages, 5 figure

    Evolutionary pathway for the 2017 emergence of a novel highly pathogenic avian influenza A(H7N9) virus among domestic poultry in Tennessee, United States

    Get PDF
    In March 2017, a novel highly pathogenic avian influenza A(H7N9) virus was detected at two commercial broiler breeder facilities in Tennessee, United States. In this study, a wild bird low pathogenic avian influenza A virus, A/blue-winged teal/Wyoming/AH0099021/2016(H7N9), was shown to be the probable precursor of the novel H7N9 virus; this low pathogenic virus has eight possible progenitor genes sharing\u3e 99% sequence identity with the novel H7N9 virus. Phylogeographic analyses showed that viral gene constellations that formed and circulated among dabbling ducks contributed to the emergence of the novel H7N9 virus. This is in contrast to the virus that caused the 2016 H7N8 outbreak, which had more genetic contributions from viruses circulating among diving ducks. Study findings support the need for ongoing wild bird surveillance to monitor circulating viruses and to understand possible evolutionary pathways of virus emergence in poultry

    Ion holes in the hydrodynamic regime in ultracold neutral plasmas

    Get PDF
    We describe the creation of localized density perturbations, or ion holes, in an ultracold neutral plasma in the hydrodynamic regime, and show that the holes propagate at the local ion acoustic wave speed. We also observe the process of hole splitting, which results from the formation of a density depletion initially at rest in the plasma. One-dimensional, two-fluid hydrodynamic simulations describe the results well. Measurements of the ion velocity distribution also show the effects of the ion hole and confirm the hydrodynamic conditions in the plasma

    Measuring nonlocal three-body spatial correlations with Rydberg trimers in ultracold quantum gases

    Full text link
    We measure nonlocal third-order spatial correlations in non-degenerate ultracold gases of bosonic (84^{84}Sr) and spin-polarized fermionic (87^{87}Sr) strontium through studies of the formation rates for ultralong-range trimer Rydberg molecules. The trimer production rate is observed to be very sensitive to the effects of quantum statistics with a strong enhancement of up to a factor of six (3!) in the case of bosonic 84^{84}Sr due to bunching, and a marked reduction for spin-polarized fermionic 87^{87}Sr due to anti-bunching. The experimental results are compared to theoretical predictions and good agreement is observed. The present approach opens the way to {\it{in situ}} studies of higher-order nonlocal spatial correlations in a wide array of ultracold atomic-gas systems.Comment: 7 pages, 5 figure
    • …
    corecore