14 research outputs found

    A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth

    Get PDF
    Multi-scale simulations, combining muscle and joint contact force (JCF) from musculoskeletal simulations with adaptive mechanobiological finite element analysis, allow to estimate musculoskeletal loading and predict femoral growth in children. Generic linearly scaled musculoskeletal models are commonly used. This approach, however, neglects subject- and age-specific musculoskeletal geometry, e.g. femoral neck-shaft angle (NSA) and anteversion angle (AVA). This study aimed to evaluate the impact of proximal femoral geometry, i.e. altered NSA and AVA, on hip JCF and femoral growth simulations. Musculoskeletal models with NSA ranging from 120° to 150° and AVA ranging from 20° to 50° were created and used to calculate muscle and hip JCF based on the gait analysis data of a typically developing child. A finite element model of a paediatric femur was created from magnetic resonance images. The finite element model was morphed to the geometries of the different musculoskeletal models and used for mechanobiological finite element analysis to predict femoral growth trends. Our findings showed that hip JCF increase with increasing NSA and AVA. Furthermore, the orientation of the hip JCF followed the orientation of the femoral neck axis. Consequently, the osteogenic index, which is a function of cartilage stresses and defines the growth rate, barely changed with altered NSA and AVA. Nevertheless, growth predictions were sensitive to the femoral geometry due to changes in the predicted growth directions. Altered NSA had a bigger impact on the growth results than altered AVA. Growth simulations based on mechanobiological principles were in agreement with reported changes in paediatric populations

    Individual muscle contributions to tibiofemoral compressive articular loading during walking, running and sidestepping

    No full text
    The tibiofemoral joint (TFJ) experiences large compressive articular contact loads during activities of daily living, caused by inertial, ligamentous, capsular, and most significantly musculotendon loads. Comparisons of relative contributions of individual muscles to TFJ contact loading between walking and sporting movements have not been previously examined. The purpose of this study was to determine relative contributions of individual lower-limb muscles to compressive articular loading of the medial and lateral TFJ during walking, running, and sidestepping. The medial and lateral compartments of the TFJ were loaded by a combination of medial and lateral muscles. During all gait tasks, the primary muscles loading the medial and lateral TFJ were the vastus medialis (VM) and vastus lateralis (VL) respectively during weight acceptance, while typically the medial gastrocnemii (MG) and lateral gastrocnemii (LG) dominated medial and lateral TFJ loading respectively during midstance and push off. Generally, the contribution of the quadriceps muscles were higher in running compared to walking, whereas gastrocnemii contributions were higher in walking compared to running. When comparing running and sidestepping, contributions to medial TFJ contact loading were generally higher during sidestepping while contributions to lateral TFJ contact loading were generally lower. These results suggests that after orthopaedic procedures, the VM, VL, MG and LG should be of particular rehabilitation focus to restore TFJ stability during dynamic gait tasks

    Meteoroids as One of the Sources for Exosphere Formation on Airless Bodies in the Inner Solar System

    Get PDF
    AbstractThis manuscript represents a review on progress made over the past decade concerning our understanding of meteoroid bombardment on airless solar system bodies as one of the sources of the formation of their exospheres. Specifically, observations at Mercury by MESSENGER and at the Moon by LADEE, together with progress made in dynamical models of the meteoroid environment in the inner solar system, offer new tools to explore in detail the physical phenomena involved in this complex relationship. This progress is timely given the expected results during the next decade that will be provided by new missions such as DESTINY+, BepiColombo, the Artemis program or the Lunar Gateway

    Appendicitis

    No full text
    corecore