331 research outputs found

    Osteoselection supported by phase separeted polymer blend films

    Get PDF
    Cataloged from PDF version of article.The instability of implants after placement inside the body is one of the main obstacles to clinically succeed in periodontal and orthopedic applications. Adherence of fibroblasts instead of osteoblasts to implant surfaces usually results in formation of scar tissue and loss of the implant. Thus, selective bioadhesivity of osteoblasts is a desired characteristic for implant materials. In this study, we developed osteoselective and biofriendly polymeric thin films fabricated with a simple phase separation method using either homopolymers or various blends of homopolymers and copolymers. As adhesive and proliferative features of cells are highly dependent on the physicochemical properties of the surfaces, substrates with distinct chemical heterogeneity, wettability, and surface topography were developed and assessed for their osteoselective characteristics. Surface characterizations of the fabricated polymer thin films were performed with optical microscopy and SEM, their wettabilities were determined by contact angle measurements, and their surface roughness was measured by profilometry. Long-term adhesion behaviors of cells to polymer thin films were determined by F-actin staining of Saos-2 osteoblasts, and human gingival fibroblasts, HGFs, and their morphologies were observed by SEM imaging. The biocompatibility of the surfaces was also examined through cell viability assay. Our results showed that heterogeneous polypropylene polyethylene/polystyrene surfaces can govern Saos-2 and HGF attachment and organization. Selective adhesion of Saos-2 osteoblasts and inhibited adhesion of HGF cells were achieved on micro-structured and hydrophobic surfaces. This work paves the way for better control of cellular behaviors for adjustment of cell material interactions. © 2014 Wiley Periodicals, Inc

    Hunting for origins of migraine pain: cluster analysis of spontaneous and capsaicin-induced firing in meningeal trigeminal nerve fibers

    Get PDF
    International audienceTrigeminal nerves in meninges are implicated in generation of nociceptive firing underlying migraine pain. However, the neurochemical mechanisms of nociceptive firing in meningeal trigeminal nerves are little understood. In this study, using suction electrode recordings from peripheral branches of the trigeminal nerve in isolated rat meninges, we analyzed spontaneous and capsaicin-induced orthodromic spiking activity. In control, biphasic single spikes with variable amplitude and shapes were observed. Application of the transient receptor potential vanilloid 1 (TRPV1) agonist capsaicin to meninges dramatically increased firing whereas the amplitudes and shapes of spikes remained essentially unchanged. This effect was antagonized by the specific TRPV1 antagonist capsazepine. Using the clustering approach, several groups of uniform spikes (clusters) were identified. The clustering approach combined with capsaicin application allowed us to detect and to distinguish "responder" (65%) from "non responder" clusters (35%). Notably, responders fired spikes at frequencies exceeding 10 Hz, high enough to provide postsynaptic temporal summation of excitation at brainstem and spinal cord level. Almost all spikes were suppressed by tetrodotoxin (TTX) suggesting an involvement of the I I X-sensitive sodium channels in nociceptive signaling at the peripheral branches of trigeminal neurons. Our analysis also identified transient (desensitizing) and long-lasting (slowly desensitizing) responses to the continuous application of capsaicin. Thus, the persistent activation of nociceptors in capsaicin-sensitive nerve fibers shown here may be involved in trigeminal pain signaling and plasticity along with the release of migraine-related neuropeptides from TRPV1 positive neurons. Furthermore, cluster analysis could be widely used to characterize the temporal and neurochemical profiles of other pain transducers likely implicated in migraine

    Hunting for origins of migraine pain: Cluster analysis of spontaneous and capsaicin-induced firing in meningeal trigeminal nerve fibers

    Get PDF
    © 2015 Zakharov, Vitale, Kilinc, Koroleva, Fayuk, Shelukhina, Naumenko, Skorinkin, Khazipov and Giniatullin. Trigeminal nerves in meninges are implicated in generation of nociceptive firing underlying migraine pain. However, the neurochemical mechanisms of nociceptive firing in meningeal trigeminal nerves are little understood. In this study, using suction electrode recordings from peripheral branches of the trigeminal nerve in isolated rat meninges, we analyzed spontaneous and capsaicin-induced orthodromic spiking activity. In control, biphasic single spikes with variable amplitude and shapes were observed. Application of the transient receptor potential vanilloid 1 (TRPV1) agonist capsaicin to meninges dramatically increased firing whereas the amplitudes and shapes of spikes remained essentially unchanged. This effect was antagonized by the specific TRPV1 antagonist capsazepine. Using the clustering approach, several groups of uniform spikes (clusters) were identified. The clustering approach combined with capsaicin application allowed us to detect and to distinguish “responder” (65%) from “non-responder” clusters (35%). Notably, responders fired spikes at frequencies exceeding 10 Hz, high enough to provide postsynaptic temporal summation of excitation at brainstem and spinal cord level. Almost all spikes were suppressed by tetrodotoxin (TTX) suggesting an involvement of the TTX-sensitive sodium channels in nociceptive signaling at the peripheral branches of trigeminal neurons. Our analysis also identified transient (desensitizing) and long-lasting (slowly desensitizing) responses to the continuous application of capsaicin. Thus, the persistent activation of nociceptors in capsaicin-sensitive nerve fibers shown here may be involved in trigeminal pain signaling and plasticity along with the release of migraine-related neuropeptides from TRPV1 positive neurons. Furthermore, cluster analysis could be widely used to characterize the temporal and neurochemical profiles of other pain transducers likely implicated in migraine

    PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower

    Get PDF
    Perianth development is specifically disrupted in mutants of the PETAL LOSS (PTL) gene, particularly petal initiation and orientation. We have cloned PTL and show that it encodes a plant-specific trihelix transcription factor, one of a family previously known only as regulators of light-controlled genes. PTL transcripts were detected in the early-developing flower, in four zones between the initiating sepals and in their developing margins. Strong misexpression of PTL in a range of tissues universally results in inhibition of growth, indicating that its normal role is to suppress growth between initiating sepals, ensuring that they remain separate. Consistent with this, sepals are sometimes fused in ptl single mutants, but much more frequently in double mutants with either of the organ boundary genes cup-shaped cotyledon1 or 2. Expression of PTL within the newly arising sepals is apparently prevented by the PINOID auxin-response gene. Surprisingly, PTL expression could not be detected in petals during the early stages of their development, so petal defects associated with PTL loss of function may be indirect, perhaps involving disruption to signalling processes caused by overgrowth in the region. PTL-driven reporter gene expression was also detected at later stages in the margins of expanding sepals, petals and stamens, and in the leaf margins; thus, PTL may redundantly dampen lateral outgrowth of these organs, helping define their final shape

    Understanding Change in Romantic Relationship Expectations of International Female Students from Turkey

    Get PDF
    In the light of grounded theory, the authors explored change in romantic relationship expectations of international students. Twelve female graduate students from Turkey were interviewed and several themes were identified explaining the presence and absence of change in participants’ attitudes toward romantic relationships. The findings are discussed in relation to acculturation and direction for future research is presented

    Wallerian-Like Degeneration of Central Neurons After Synchronized and Geometrically Registered Mass Axotomy in a Three-Compartmental Microfluidic Chip

    Get PDF
    Degeneration of central axons may occur following injury or due to various diseases and it involves complex molecular mechanisms that need to be elucidated. Existing in vitro axotomy models are difficult to perform, and they provide limited information on the localization of events along the axon. We present here a novel experimental model system, based on microfluidic isolation, which consists of three distinct compartments, interconnected by parallel microchannels allowing axon outgrowth. Neurons cultured in one compartment successfully elongated their axons to cross a short central compartment and invade the outermost compartment. This design provides an interesting model system for studying axonal degeneration and death mechanisms, with a previously impossible spatial and temporal control on specific molecular pathways. We provide a proof-of-concept of the system by reporting its application to a well-characterized experimental paradigm, axotomy-induced Wallerian degeneration in primary central neurons. Using this model, we applied localized central axotomy by a brief, isolated flux of detergent. We report that mouse embryonic cortical neurons exhibit rapid Wallerian-like distal degeneration but no somatic death following central axotomy. Distal axons show progressive degeneration leading to axonal beading and cytoskeletal fragmentation within a few hours after axotomy. Degeneration is asynchronous, reminiscent of in vivo Wallerian degeneration. Axonal cytoskeletal fragmentation is significantly delayed with nicotinamide adenine dinucleotide pretreatment, but it does not change when distal calpain or caspase activity is inhibited. These findings, consistent with previous experiments in vivo, confirm the power and biological relevance of this microfluidic architecture

    Preliminary data on COVID-19 in patients with hemoglobinopathies : A multicentre ICET-A study

    Get PDF
    Objectives: This study aims to investigate, retrospectively, the epidemiological and clinical characteristics, laboratory results, radiologic findings, and outcomes of COVID-19 in patients with transfusion-dependent β thalassemia major (TM), β-thalassemia intermedia (TI) and sickle cell disease (SCD). Design: A total of 17 Centers, from 10 countries, following 9,499 patients with hemoglobinopathies, participated in the survey. Main outcome data: Clinical, laboratory, and radiologic findings and outcomes of patients with COVID-19 were collected from medical records and summarized. Results: A total of 13 patients, 7 with TM, 3 with TI, and 3 with SCD, with confirmed COVID-19, were identified in 6 Centers from different countries. The overall mean age of patients was 33.7±12.3 years (range:13-66); 9/13 (69.2%) patients were females. Six patients had pneumonia, and 4 needed oxygen therapy. Increased C-reactive protein (6/10), high serum lactate dehydrogenase (LDH; 6/10), and erythrocyte sedimentation rate (ESR; 6/10) were the most common laboratory findings. 6/10 patients had an exacerbation of anemia (2 with SCD). In the majority of patients, the course of COVID-19 was moderate (6/10) and severe in 3/10 patients. A 30-year-old female with TM, developed a critical SARS-CoV-2 infection, followed by death in an Intensive Care Unit. In one Center (Oman), the majority of suspected cases were observed in patients with SCD between the age of 21 and 40 years. A rapid clinical improvement of tachypnea/dyspnea and oxygen saturation was observed, after red blood cell exchange transfusion, in a young girl with SCD and worsening of anemia (Hb level from 9.2 g/dl to 6.1g/dl). Conclusions: The data presented in this survey permit an early assessment of the clinical characteristics of COVID 19 in different countries. 70% of symptomatic patients with COVID-19 required hospitalization. The presence of associated co-morbidities can aggravate the severity of COVID- 19, leading to a poorer prognosis irrespective of age

    The Global Burden of Alveolar Echinococcosis

    Get PDF
    Human alveolar echinococcosis (AE), caused by the larval stage of the fox tapeworm Echinococcus multilocularis, is amongst the world's most dangerous zoonoses. Transmission to humans is by consumption of parasite eggs which are excreted in the faeces of the definitive hosts: foxes and, increasingly, dogs. Transmission can be through contact with the definitive host or indirectly through contamination of food or possibly water with parasite eggs. We made an intensive search of English, Russian, Chinese and other language databases. We targeted data which could give country specific incidence or prevalence of disease and searched for data from every country we believed to be endemic for AE. We also used data from other sources (often unpublished). From this information we were able to make an estimate of the annual global incidence of disease and disease burden using standard techniques for calculation of DALYs. Our studies suggest that AE results in a median of 18,235 cases globally with a burden of 666,433 DALYs per annum. This is the first estimate of the global burden of AE both in terms of global incidence and DALYs and demonstrates the burden of AE is comparable to several diseases in the neglected tropical disease cluster

    Neurons are MHC Class I-Dependent Targets for CD8 T Cells upon Neurotropic Viral Infection

    Get PDF
    Following infection of the central nervous system (CNS), the immune system is faced with the challenge of eliminating the pathogen without causing significant damage to neurons, which have limited capacities of renewal. In particular, it was thought that neurons were protected from direct attack by cytotoxic T lymphocytes (CTL) because they do not express major histocompatibility class I (MHC I) molecules, at least at steady state. To date, most of our current knowledge on the specifics of neuron-CTL interaction is based on studies artificially inducing MHC I expression on neurons, loading them with exogenous peptide and applying CTL clones or lines often differentiated in culture. Thus, much remains to be uncovered regarding the modalities of the interaction between infected neurons and antiviral CD8 T cells in the course of a natural disease. Here, we used the model of neuroinflammation caused by neurotropic Borna disease virus (BDV), in which virus-specific CTL have been demonstrated as the main immune effectors triggering disease. We tested the pathogenic properties of brain-isolated CD8 T cells against pure neuronal cultures infected with BDV. We observed that BDV infection of cortical neurons triggered a significant up regulation of MHC I molecules, rendering them susceptible to recognition by antiviral CTL, freshly isolated from the brains of acutely infected rats. Using real-time imaging, we analyzed the spatio-temporal relationships between neurons and CTL. Brain-isolated CTL exhibited a reduced mobility and established stable contacts with BDV-infected neurons, in an antigen- and MHC-dependent manner. This interaction induced rapid morphological changes of the neurons, without immediate killing or impairment of electrical activity. Early signs of neuronal apoptosis were detected only hours after this initial contact. Thus, our results show that infected neurons can be recognized efficiently by brain-isolated antiviral CD8 T cells and uncover the unusual modalities of CTL-induced neuronal damage
    corecore