183 research outputs found
Time-dependent single electron tunneling through a shuttling nano-island
We offer a general approach to calculation of single-electron tunneling
spectra and conductance of a shuttle oscillating between two half-metallic
leads with fully spin polarized carriers. In this case the spin-flip processes
are completely suppressed and the problem may be solved by means of canonical
transformation, where the adiabatic component of the tunnel transparency is
found exactly, whereas the non-adiabatic corrections can be taken into account
perturbatively. Time-dependent corrections to the tunnel conductance of moving
shuttle become noticeable at finite bias in the vicinity of the even/odd
occupation boundary at the Coulomb diamond diagram.Comment: 12 pages, 4 figure
The model of drying sessile drop of colloidal solution
We have proposed and investigated a model of drying colloidal suspension drop
placed onto a horizontal substrate in which the sol to gel phase transition
occurs. The temporal evolution of volume fraction of the solute and the gel
phase dynamics were obtained from numerical simulations. Our model takes into
account the fact that some physical quantities are dependent on volume fraction
of the colloidal particles.Comment: Submitted to IJMP
Electron-hole asymmetry is the key to superconductivity
In a solid, transport of electricity can occur via negative electrons or via
positive holes. In the normal state of superconducting materials experiments
show that transport is usually dominated by
. Instead, in the superconducting state experiments show that the
supercurrent is always carried by .
These experimental facts indicate that electron-hole asymmetry plays a
fundamental role in superconductivity, as proposed by the theory of hole
superconductivity.Comment: Presented at the New3SC-4 meeting, San Diego, Jan. 16-21 2003; to be
published in Int. J. Mod. Phys.
Vibration-induced Kondo tunneling through metal-organic complexes with even electron occupation number
We investigate transport through a mononuclear transition-metal complex with
strong tunnel coupling to two electrodes. The ground state of this molecule is
a singlet while the first excited state is a triplet. We show that a modulation
of the tunnel-barrier due to a molecular distortion which couples to the
tunneling induces a Kondo-effect, provided the discrete vibrational energy
compensates the singlet/triplet gap. We discuss the single-phonon and
two-phonon assisted co-tunneling and possible experimental realization of the
theory.Comment: 4 pages, 3 eps figure
Why holes are not like electrons. II. The role of the electron-ion interaction
In recent work, we discussed the difference between electrons and holes in
energy band in solids from a many-particle point of view, originating in the
electron-electron interaction, and argued that it has fundamental consequences
for superconductivity. Here we discuss the fact that there is also a
fundamental difference between electrons and holes already at the single
particle level, arising from the electron-ion interaction. The difference
between electrons and holes due to this effect parallels the difference due to
electron-electron interactions: {\it holes are more dressed than electrons}. We
propose that superconductivity originates in 'undressing' of carriers from
electron-electron and electron-ion interactions, and that both aspects
of undressing have observable consequences.Comment: Continuation of Phys.Rev.B65, 184502 (2002) = cond-mat/0109385 (2001
Interplay between Heavy Fermions and Crystal Field Excitation in Kondo Lattices. Low-Temperature Thermodynamics and Inelastic Neutron Scattering Spectra of CeNiSn
The microscopic theory of interaction between the heavy fermions and the
crystal field excitations in Kondo lattices is presented. It is shown that the
heavy-fermion spectrum scaled by the Kondo temperature can be modified by
the crystal field excitations with the energy provided the
inequality is realized. On the base of general description of
excitation spectrum the detailed qualitative and quantitative explanation of
anisotropic inelastic neutron scattering spectra and low-temperature specific
heat of orthorhombic CeNiSn is given. The theory resolves the apparent
contradiction between the metallic conductivity and the gap-wise behavior of
thermodynamic properties and spin response of CeNiSn at low temperatures.Comment: 24 pages (LaTeX), 12 Postscript figures, submitted to Phys.Rev.
Charge Radii of beta-Stable Nuclei
In previous work it was shown that the radius of nucleus R is determined by
the alpha-cluster structure and can be estimated on the number of
alpha-clusters disregarding to the number of excess neutrons. A hypothesis also
was made that the radius R_m of a beta-stable isotope, which is actually
measured at electron scattering experiments, is determined by the volume
occupied by the matter of the core plus the volume occupied by the peripheral
alpha-clusters. In this paper it is shown that the condition R_m = R restricts
the number of excess neutrons filling the core to provide the beta-stability.
The number of peripheral clusters can vary from 1 to 5 and the value of R for
heavy nuclei almost do not change, whereas the number of excess neutrons should
change with the number of peripheral clusters to get the value of R_m close to
R. It can explain the path of the beta-stability and its width. The radii R_m
of the stable isotopes with 12 =< Z =< 83 and the alpha-decay isotopes with 84
=< Z =< 116 that are stable to beta-decay have been calculated.Comment: Latex2e 2.09, 10 pages, 3 figure
Superexchange in Dilute Magnetic Dielectrics: Application to (Ti,Co)O_2
We extend the model of ferromagnetic superexchange in dilute magnetic
semiconductors to the ferromagnetically ordered highly insulating compounds
(dilute magnetic dielectrics). The intrinsic ferromagnetism without free
carriers is observed in oxygen-deficient films of anatase TiO_2 doped with
transition metal impurities in cation sublattice. We suppose that ferromagnetic
order arises due to superexchange between complexes [oxygen vacancies +
magnetic impurities], which are stabilized by charge transfer from vacancies to
impurities. The Hund rule controls the superexchange via empty vacancy related
levels so that it becomes possible only for the parallel orientation of
impurity magnetic moments. The percolation threshold for magnetic ordering is
determined by the radius of vacancy levels, but the exchange mechanism does not
require free carriers. The crucial role of the non-stoichiometry in formation
of the ferromagnetism makes the Curie temperatures extremely sensitive to the
methods of sample preparation.Comment: 18 pages, 2 figure
Kondo Shuttling in Nanoelectromechanical Single-Electron Transistor
We investigate theoretically a mechanically assisted Kondo effect and
electric charge shuttling in nanoelectromechanical single-electron transistor
(NEM-SET). It is shown that the mechanical motion of the central island (a
small metallic particle) with the spin results in the time dependent tunneling
width which leads to effective increase of the Kondo temperature. The
time-dependent oscillating Kondo temperature T_K(t) changes the scaling
behavior of the differential conductance resulting in the suppression of
transport in a strong coupling- and its enhancement in a weak coupling regimes.
The conditions for fine-tuning of the Abrikosov-Suhl resonance and possible
experimental realization of the Kondo shuttling are discussed.Comment: 4 pages, 2 eps figure
- …