51 research outputs found

    Protein arrays as tools for serum autoantibody marker discovery in cancer.

    Get PDF
    Protein array technology has begun to play a significant role in the study of protein-protein interactions and in the identification of antigenic targets of serum autoantibodies in a variety of autoimmune disorders. More recently, this technology has been applied to the identification of autoantibody signatures in cancer. The identification of tumour-associated antigens (TAAs) recognised by the patient\u27s immune response represents an exciting approach to identify novel diagnostic cancer biomarkers and may contribute towards a better understanding of the molecular mechanisms involved. Circulating autoantibodies have not only been used to identify TAAs as diagnostic/prognostic markers and potential therapeutic targets, they also represent excellent biomarkers for the early detection of tumours and potential markers for monitoring the efficacy of treatment. Protein array technology offers the ability to screen the humoral immune response in cancer against thousands of proteins in a high throughput technique, thus readily identifying new panels of TAAs. Such an approach should not only aid in improved diagnostics, but has already contributed to the identification of complex autoantibody signatures that may represent disease subgroups, early diagnostics and facilitated the analysis of vaccine trials

    Patulin, deoxynivalenol, zearalenone and T-2 toxin affect viability and modulate cytokine secretion in J774A.1 murine macrophages

    Get PDF
    Mycotoxins are secondary fungal metabolites, which occur in food and feed. They have detrimental effects on the health of humans and animals, and they are known to cause immunosuppression. In this study the effect of patulin, deoxynivalenol (DON), zearalenone (ZEN) and T-2 toxin exposure on the viability and the secretion of key pro- and anti-inflammatory cytokines from the murine macrophage cell line, J774A.1, was investigated. Exposure of macrophages to high doses of ZEN (100,000 pg/mL) and T-2 toxin (10,000 and 100,000 pg/mL) resulted in a significant decrease (P < 0.05 and P < 0.01) in cell viability. Exposure of macrophages to these mycotoxins resulted in a dose-dependent modulation of cytokine secretion. Specifically, exposure to low doses of patulin (0.001, 0.1 and 1 pg/mL) resulted in a statistically significant decrease in the secretion of the pro-inflammatory cytokines interleukin (IL) 6 (IL-6) and tumor necrosis factor alpha (TNF-α), following stimulation with lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls. Treatment with low doses of DON (0.001 pg/mL) and ZEN (0.001 and 0.01 pg/mL) significantly decreased (P < 0.01) the secretion of the pro-inflammatory cytokine IL-12p40, while several doses of T-2 toxin (0.001, 0.01, 0.1, 1 and 100 pg/mL) caused a significant decrease the expression of IL-6. Each of the mycotoxins also significantly increased the production of the anti-inflammatory cytokine IL-10, both before and after LPS stimulation. This data provides further insight into the mechanisms by which mycotoxins modulate the host immune response to exert their immunosuppressive activity

    Human IgG antibody profiles differentiate between symptomatic patients with and without colorectal cancer

    Get PDF
    Abstract OBJECTIVE: Patients with cancer have antibodies against tumour antigens. Characterising the antibody repertoire may provide insights into aberrant cellular mechanisms in cancer development, ultimately leading to novel diagnostic or therapeutic targets. The aim of this study was to characterise the antibody profiles in patients whose symptoms warranted colonoscopy, to see if there was a difference in patients with and without colorectal cancer. METHODS: Patients were recruited from a colonoscopy clinic. Individual serum samples from 43 patients with colorectal cancer and 40 patients with no cancer on colonoscopy were profiled on a 37 830 clone recombinant human protein array. Antigen expression was evaluated by quantitative reverse transcription-PCR and by immunohistochemistry on tissue microarrays. RESULTS: Using a sex- and age-matched training set, 18 antigens associated with cancer and 4 associated with the absence of cancer (p\u3c0.05) were identified and confirmed. To investigate the mechanisms triggering antibody responses to these antigens, antigen expression was examined in normal colorectal mucosa and colorectal carcinoma of the same patients. The identified antigens showed cellular accumulation (p53), aberrant cellular expression (high mobility group B1 (HMGB1)) and overexpression (tripartite motif-containing 28 (TRIM28), p53, HMGB1, transcription factor 3 (TCF3), longevity assurance gene homologue 5 (LASS5) and zinc finger protein 346 (ZNF346)) in colorectal cancer tissue compared with normal colorectal mucosa. CONCLUSIONS: It is demonstrated for the first time that screening high-density protein arrays identifies unique antibody profiles that discriminate between symptomatic patients with and without colorectal cancer. The differential expression of identified antigens suggests their involvement in aberrant cellular mechanisms in cance

    Rapid characterization of binding specificity and cross-reactivity of antibodies using recombinant human protein arrays.

    Get PDF
    Antibodies are routinely used as research tools, in diagnostic assays and increasingly as therapeutics. Ideally, these applications require antibodies with high sensitivity and specificity; however, many commercially available antibodies are limited in their use as they cross-react with non-related proteins. Here we describe a novel method to characterize antibody specificity. Six commercially available monoclonal and polyclonal antibodies were screened on high-density protein arrays comprising of ~10,000 recombinant human proteins (Imagenes). Two of the six antibodies examined; anti-pICln and anti-GAPDH, bound exclusively to their target antigen and showed no cross-reactivity with non-related proteins. However, four of the antibodies, anti-HSP90, anti-HSA, anti-bFGF and anti-Ro52, showed strong cross-reactivity with other proteins on the array. Antibody-antigen interactions were readily confirmed using Western immunoblotting. In addition, the redundant nature of the protein array used, enabled us to define the epitopic region within HSP90 of the anti-HSP90 antibody, and identify possible shared epitopes in cross-reacting proteins. In conclusion, high-density protein array technology is a fast and effective means for determining the specificity of antibodies and can be used to further improve the accuracy of antibody applications

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Clinical applications of immunoassays

    No full text
    Immunoassays represent an invaluable tool for detection, confirmation and monitoring of disease in the clinical setting. Their major benefits are rapid assay times, simple handling and conclusive results, which can influence clinical decision-making and therefore have a direct impact on patient treatment. Human diseases are often accompanied by the presence of molecular factors such as biomarkers, which can be found in bodily fluids and tissues. Such factors may arise independently of clinical symptoms and can be therefore used as analyte biomarkers indicating the presence or absence of a disease. With the advances of bioanalytical methods in recent years, numerous disease-associated biomarker molecules have been identified and are now widely used with the aid of innovative immunoassays to detect the presence of disease. In this chapter we will discuss the clinical application of immunoassays in the detection of disease and their relevance in monitoring of some of the most common disease processes

    Method of assessing colorectal cancer status in an individual

    No full text

    Referencing cross-reactivity of detection antibodies for protein array experiments

    No full text
    Protein arrays are frequently used to profile antibody repertoires in humans and animals. High-throughput protein array characterisation of complex antibody repertoires necessitates the use of extensively validated secondary detection antibodies. This article details the validation of an affinity-isolated anti-chicken IgY antibody produced in rabbit and a goat anti-rabbit IgG antibody conjugated with alkaline phosphatase using protein arrays consisting of 7,390 distinct human proteins. Probing protein arrays with secondary antibodies in absence of chicken serum revealed non-specific binding to 61 distinct human proteins. Despite the identified non-specific binding, the tested antibodies are well suited for use in protein array experiments as the cross-reactive binding partners can be readily excluded from further analysis. The evident cross-reactivity of the tested secondary detection antibodies points towards the necessity of platform-specific antibody characterisation studies for all secondary immunoreagents. Furthermore, secondary antibody characterisation using protein arrays enables the generation of reference lists of cross-reactive proteins, which can be then marked as potential false positives in follow-up experiments. Providing such cross-reactivity reference lists accessible to the wider research community may help to interpret data generated with the same antibodies in applications not only related to protein arrays such as immunoprecipitation, Western blots or other immunoassays.Protein arrays are frequently used to profile antibody repertoires in humans and animals. High-throughput protein array characterisation of complex antibody repertoires necessitates the use of extensively validated secondary detection antibodies. This article details the validation of an affinity-isolated anti-chicken IgY antibody produced in rabbit and a goat anti-rabbit IgG antibody conjugated with alkaline phosphatase using protein arrays consisting of 7,390 distinct human proteins. Probing protein arrays with secondary antibodies in absence of chicken serum revealed non-specific binding to 61 distinct human proteins. Despite the identified non-specific binding, the tested antibodies are well suited for use in protein array experiments as the cross-reactive binding partners can be readily excluded from further analysis. The evident cross-reactivity of the tested secondary detection antibodies points towards the necessity of platform-specific antibody characterisation studies for all secondary immunoreagents. Furthermore, secondary antibody characterisation using protein arrays enables the generation of reference lists of cross-reactive proteins, which can be then marked as potential false positives in follow-up experiments. Providing such cross-reactivity reference lists accessible to the wider research community may help to interpret data generated with the same antibodies in applications not only related to protein arrays such as immunoprecipitation, Western blots or other immunoassays
    corecore