2 research outputs found

    Effects of Long Distance Transportation on Honey Bee Physiology

    Get PDF
    Despite the requirement of long distance transportation of honey bees used for pollination, we understand little how transportation affects honey bees. Three trials in three different states (CA, GA, and MI) were conducted to study the effects of long distance transportation on honey bee physiology. Newly emerged bees from one colony were split into two groups and introduced into a transported (T) colony or a stationary (S) colony in each trial. Volumes of hypopharyngeal gland acini in T colonies were significantly smaller than S colonies in all three trials. There were no significant differences between S and T colonies in juvenile hormone titers. Protein content in head showed no significant differences between S and T either in 7-day-old or 17-day-old bees of MI trial, but GA trial showed a significant reduction in bees experiencing transportation. Protein content in thorax was only measured in GA trial and was not significantly different between the two groups. Lipid content in abdomen was not significantly different between the S and T colonies in all three trials. This study suggests that bees experiencing transportation have trouble fully developing their food glands and this might affect their ability to nurse the next generation of workers

    Ontogenic potentialities of the worker caste in two sympatric subterranean termites in France

    No full text
    International audienceIn termites, the capacity of workers to differentiate into neotenic reproductives is an important characteristic that deserves particular attention. To gain insight into the differentiation pathway, the potentialities of workers and the endocrinal changes during the formation of neotenics were compared in two sympatric termites, Reticulitermes flavipes and Reticulitermes grassei. After 1 year of development, 100% of R. flavipes worker groups produced neotenics against only 63% of R. grassei groups. The average production of female neotenics was significantly higher in R. flavipes worker groups compared with R. grassei groups and R. flavipes produced a greater proportion of female neotenics. Moreover, R. flavipes produced more offspring, not only because there were more females, but also because R. flavipes females were more productive. Moreover, the offspring produced by R. flavipes grew faster than the offspring of R. grassei. Both ecdysteroid and juvenile hormone (JH) titers varied significantly during the development of neotenics. The two species showed similar ecdysteroid titer variation patterns. However, the JH titer variation patterns strongly differed: in R. grassei, the concentration of JH increased in maturing neotenics then dropped in mature neotenics, whereas in R. flavipes, the level of JH was significantly higher than in R. grassei and remained constantly high in mature neotenics. Overall, these results suggest that these two species differ strongly in many lifehistory traits as well as in the physiological control of their caste differentiation system. Possible origins and mechanisms of such interspecific variations are discussed, as well as their evolutionary and ecological consequences
    corecore