293 research outputs found

    Three-dimensional shapes and distributions of long-period stacking ordered structures in Mg₉₇Zn₁Gd₂ cast alloys characterized by electron tomography

    Full text link
    Three-dimensional (3D) configurations of 14H long-period stacking ordered (LPSO) structures formed in Mg97Zn1Gd2 cast alloys at intermediate stages of the formation process have been studied by single tilt-axis electron tomography using high-angle annular dark-field scanning transmission electron microscopy. Lateral morphology of the 14H LPSO is clearly visualized by reconstructing 3D volumes. An existence of "dent-shaped" area was found in a 3D reconstructed volume for the first time. The edge of LPSO shows a characteristic triangular shape with an angle of 60°, which indicates that the growth front is parallel to {112¯0}Mg. It is suggested that in-plane irregular or characteristic shapes are related to the lateral growth mechanism of LPSO. Electron tomography has proven to be an indispensable tool to characterize in-plane structural information of LPSO formed in α-Mg matrix

    Three-dimensional imaging of a long-period stacking ordered phase in Mg₉₇Zn₁Gd₂ using high-voltage electron microscopy

    Full text link
    Spatial configurations and lateral morphology of the 14H long-period stacking ordered (LPSO) phase have been studied by single tilt-axis electron tomography using high-voltage scanning transmission electron microscopy (STEM) operated at 1 MV. A "Quonset hut-like" lateral shape of the LPSO was found in a tomogram of a specimen as thick as 1.7 μ m. The reconstructed volume reveals spatial distribution of residual particulate precipitates of (Mg, Zn)3Gd phase 20-30 nm in diameters. The precipitates act as a source of solute elements for the formation and growth processes of 14H LPSO. 1 MV-STEM realizes enough resolution for imaging the morphology of LPSO as well as high electron transmittance (∼4.1 μ m) without any obvious electron irradiation damages on microstructures

    Distinct Methylphenidate-Evoked Response Measured Using Functional Near-Infrared Spectroscopy During Go/No-Go Task as a Supporting Differential Diagnostic Tool Between Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder Comorbid Children

    Get PDF
    Attention deficit/hyperactivity disorder (ADHD) has been frequently reported as co-occurring with autism spectrum disorder (ASD). However, ASD-comorbid ADHD is difficult to diagnose since clinically significant symptoms are similar in both disorders. Therefore, we propose a classification method of differentially recognizing the ASD-comorbid condition in ADHD children. The classification method was investigated based on functional brain imaging measured by near-infrared spectroscopy (NIRS) during a go/no-go task. Optimization and cross-validation of the classification method was carried out in medicated-naïve and methylphenidate (MPH) administered ADHD and ASD-comorbid ADHD children (randomized, double-blind, placebo-controlled, and crossover design) to select robust parameters and cut-off thresholds. The parameters could be defined as either single or averaged multi-channel task-evoked activations under an administration condition (i.e., pre-medication, post-MPH, and post-placebo). The ADHD children were distinguished by significantly high MPH-evoked activation in the right hemisphere near the midline vertex. The ASD-comorbid ADHD children tended to have low activation responses in all regions. High specificity (86 ± 4.1%; mean ± SD), sensitivity (93 ± 7.3%), and accuracy (82 ± 1.6%) were obtained using the activation of oxygenated-hemoglobin concentration change in right middle frontal, angular, and precentral gyri under MPH medication. Therefore, the significantly differing MPH-evoked responses are potentially effective features and as supporting differential diagnostic tools
    corecore