534 research outputs found

    Cell proliferation, cell shape, and microtubule and cellulose microfibril organization of tobacco BY-2 cells are not altered by exposure to near weightlessness in space

    Get PDF
    The microtubule cytoskeleton and the cell wall both play key roles in plant cell growth and division, determining the plant’s final stature. At near weightlessness, tubulin polymerizes into microtubules in vitro, but these microtubules do not self-organize in the ordered patterns observed at 1g. Likewise, at near weightlessness cortical microtubules in protoplasts have difficulty organizing into parallel arrays, which are required for proper plant cell elongation. However, intact plants do grow in space and therefore should have a normally functioning microtubule cytoskeleton. Since the main difference between protoplasts and plant cells in a tissue is the presence of a cell wall, we studied single, but walled, tobacco BY-2 suspension-cultured cells during an 8-day space-flight experiment on board of the Soyuz capsule and the International Space Station during the 12S mission (March–April 2006). We show that the cortical microtubule density, ordering and orientation in isolated walled plant cells are unaffected by near weightlessness, as are the orientation of the cellulose microfibrils, cell proliferation, and cell shape. Likely, tissue organization is not essential for the organization of these structures in space. When combined with the fact that many recovering protoplasts have an aberrant cortical microtubule cytoskeleton, the results suggest a role for the cell wall, or its production machinery, in structuring the microtubule cytoskeleto

    A Nation-Wide Planning Framework for Large-Scale Collaboration on Legacy Print Monograph Collections

    Get PDF
    Libraries are working toward collaborative management and preservation of print journals, newspapers, legal materials, and government documents; they must also establish a similar concerted effort focused on print monographs. Monographs present complex challenges at a time when libraries want to ensure the preservation of the print record but have increasing incentives to divest of older, less used print materials and take advantage of the affordances of electronic text. With LYRASIS as lead organization, planning partners California Digital Library (CDL), Committee on Institutional Cooperation (CIC), and Center for Research Libraries (CRL)were awarded a grant from the Institute for Museum and Library Services (IMLS) to conduct a workshop titled “Developing a North-American Strategy to Preserve & Manage Print Collections of Monographs.” Workshop participants discussed the challenges and issues involved in collaborative monograph preservation and formulated an agenda of research and demonstration projects to test elements of a strategy

    Regional and National Cooperation on Legacy Print Collections

    Get PDF
    This reports on a meeting convened by the Center for Research Libraries on July 10, 2009, in Chicago for representatives of more than a dozen library consortia and other organizations with an interest in shaping a national approach to long-term preservation of and access to print collections

    Rapportage onderzoek aantasting van de bast bij laanbomen

    Get PDF
    In dit verslag zijn aantastingen op de stam onderzocht van Carpinus betulus ‘Frans Fontaine’, Fagus sylvatica “ Atropurpurea”, Fraxinus excelsior ‘Atlas’, Quercus palustris, Quercus robur, Sorbus latifolia “Henk Vink” en Ulmus ‘Clusius’ Daarbij is aandacht besteed aan het voorkomen en de aard en ontwikkeling van bastknobbels, baststrepen, bastscheuren, verkleuringen en het effect van epifyten zoals schimmels en korstmosse

    High quality ultrafast transmission electron microscopy using resonant microwave cavities

    Get PDF
    Ultrashort, low-emittance electron pulses can be created at a high repetition rate by using a TM110_{110} deflection cavity to sweep a continuous beam across an aperture. These pulses can be used for time-resolved electron microscopy with atomic spatial and temporal resolution at relatively large average currents. In order to demonstrate this, a cavity has been inserted in a transmission electron microscope, and picosecond pulses have been created. No significant increase of either emittance or energy spread has been measured for these pulses. At a peak current of 814±2814\pm2 pA, the root-mean-square transverse normalized emittance of the electron pulses is εn,x=(2.7±0.1)1012\varepsilon_{n,x}=(2.7\pm0.1)\cdot 10^{-12} m rad in the direction parallel to the streak of the cavity, and εn,y=(2.5±0.1)1012\varepsilon_{n,y}=(2.5\pm0.1)\cdot 10^{-12} m rad in the perpendicular direction for pulses with a pulse length of 1.1-1.3 ps. Under the same conditions, the emittance of the continuous beam is εn,x=εn,y=(2.5±0.1)1012\varepsilon_{n,x}=\varepsilon_{n,y}=(2.5\pm0.1)\cdot 10^{-12} m rad. Furthermore, for both the pulsed and the continuous beam a full width at half maximum energy spread of 0.95±0.050.95\pm0.05 eV has been measured

    Theory and particle tracking simulations of a resonant radiofrequency deflection cavity in TM110_{110} mode for ultrafast electron microscopy

    Full text link
    We present a theoretical description of resonant radiofrequency (RF) deflecting cavities in TM110_{110} mode as dynamic optical elements for ultrafast electron microscopy. We first derive the optical transfer matrix of an ideal pillbox cavity and use a Courant-Snyder formalism to calculate the 6D phase space propagation of a Gaussian electron distribution through the cavity. We derive closed, analytic expressions for the increase in transverse emittance and energy spread of the electron distribution. We demonstrate that for the special case of a beam focused in the center of the cavity, the low emittance and low energy spread of a high quality beam can be maintained, which allows high-repetition rate, ultrafast electron microscopy with 100 fs temporal resolution combined with the atomic resolution of a high-end TEM. This is confirmed by charged particle tracking simulations using a realistic cavity geometry, including fringe fields at the cavity entrance and exit apertures

    Design and characterization of dielectric filled TM110_{110} microwave cavities for ultrafast electron microscopy

    Get PDF
    Microwave cavities oscillating in the TM110_{110} mode can be used as dynamic electron-optical elements inside an electron microscope. By filling the cavity with a dielectric material it becomes more compact and power efficient, facilitating the implementation in an electron microscope. However, the incorporation of the dielectric material makes the manufacturing process more difficult. Presented here are the steps taken to characterize the dielectric material, and to reproducibly fabricate dielectric filled cavities. Also presented are two versions with improved capabilities. The first, called a dual-mode cavity, is designed to support two modes simultaneously. The second has been optimized for low power consumption. With this optimized cavity a magnetic field strength of 2.84 ±\pm 0.07 mT was generated at an input power of 14.2 ±\pm 0.2 W. Due to the low input powers and small dimensions, these dielectric cavities are ideal as electron-optical elements for electron microscopy setups

    A distributed national stored collection: Testing the possibilities

    Get PDF
    This paper reports on a study of the holdings of a single discipline (Design) by a single institution (RMIT University Library) in order to test for the possibility of a form of distributed national storage in Australia. The study was undertaken using OCLC Collection Analysis software and the WorldCat database. The collection of RMIT University Library is compared with two ‘groups’ of libraries, the first consisting of seven Victorian academic library collections, and the second of three Melbourne-based non-academic libraries considered to have strong Design collections. Conclusions indicate that for this discipline a form of distributed storage is already in place, with the RMIT University Library collection making a considerable and complementary contribution to the state wide holdings

    Dual mode microwave deflection cavities for ultrafast electron microscopy

    Get PDF
    This paper presents the experimental realization of an ultrafast electron microscope operating at a repetition rate of 75 MHz based on a single compact resonant microwave cavity operating in dual mode. This elliptical cavity supports two orthogonal TM110_{110} modes with different resonance frequencies that are driven independently. The microwave signals used to drive the two cavity modes are generated from higher harmonics of the same Ti:Sapphire laser oscillator. Therefore the modes are accurately phase-locked, resulting in periodic transverse deflection of electrons described by a Lissajous pattern. By sending the periodically deflected beam through an aperture, ultrashort electron pulses are created at a repetition rate of 75 MHz. Electron pulses with τ=(750±10)\tau=(750\pm10) fs pulse duration are created with only (2.4±0.1)(2.4\pm0.1) W of microwave input power; with normalized rms emittances of ϵn,x=(2.1±0.2)\epsilon_{n,x}=(2.1\pm0.2) pm rad and ϵn,y=(1.3±0.2)\epsilon_{n,y}=(1.3\pm0.2) pm rad for a peak current of Ip=(0.4±0.1)I_p=(0.4\pm0.1) nA. This corresponds to an rms normalized peak brightness of Bnp,rms=(7±1)×106B_{np,\textrm{rms}}=(7\pm1)\times10^6 A/m2^2 sr V, equal to previous measurements for the continuous beam. In addition, the FWHM energy spread of ΔU=(0.90±0.05)\Delta U = (0.90\pm0.05) eV is also unaffected by the dual mode cavity. This allows for ultrafast pump-probe experiments at the same spatial resolution of the original TEM in which a 75 MHz Ti:Sapphire oscillator can be used for exciting the sample. Moreover, the dual mode cavity can be used as a streak camera or time-of-flight EELS detector with a dynamic range >104>10^4
    corecore