141 research outputs found

    Impact of adding reduced and weight-based insulin dosing options to the emergency department and inpatient hyperkalemia order-set

    Get PDF
    Purpose: To compare the effects of weight-based, reduced, and standard IV insulin doses on potassium reduction and hypoglycemia incidence in the treatment of acute hyperkalemia. Methods: The hyperkalemia treatment order-set was updated to include reduced and weight-based insulin dose options. Patients ≥ 18 years old with acute hyperkalemia treated with insulin using the order-set were included. Patients with missing data or who started dialysis before follow-up potassium monitoring were excluded. The primary efficacy outcome was reduction in serum potassium. The primary safety outcome was incidence of hypoglycemia and severe hypoglycemia. Secondary outcomes included insulin dose administered, completion of hourly glucose checks, and dextrose use. Results: The pre-protocol group included 60 patients and the post-protocol group included 76 patients. Potassium reduction was similar with a mean reduction of 0.9 mEq/L in the pre-protocol group and 0.85 mEq/L in the post-protocol group. The incidence of hypoglycemia was 18% in the pre-protocol group with 2% of patients developing severe hypoglycemia. The incidence of hypoglycemia was 13% in the post-protocol group with 3% of patients developing severe hypoglycemia. The mean insulin dose administered was 9.5 units in the pre-protocol group and 7.7 units in the post-protocol group. In the post-protocol group, weight-based and reduced insulin doses were administered to 84% and 13% of patients, respectively. Less than 25% of patients completed all glucose checks. Only about 50% of patients with hypoglycemia were treated with dextrose. Conclusions: Using weight-based and reduced insulin doses in the treatment of acute hyperkalemia results in comparable potassium reduction and reduced hypoglycemia incidence

    In Vitro and In Vivo Anti-Angiogenic Activities of Panduratin A

    Get PDF
    Targeting angiogenesis has emerged as an attractive and promising strategy in anti-cancer therapeutic development. The present study investigates the anti-angiogenic potential of Panduratin A (PA), a natural chalcone isolated from Boesenbergia rotunda by using both in vitro and in vivo assays.PA exerted selective cytotoxicity on human umbilical vein endothelial cells (HUVECs) with IC(50) value of 6.91 ± 0.85 µM when compared to human normal fibroblast and normal liver epithelial cells. Assessment of the growth kinetics by cell impedance-based Real-Time Cell Analyzer showed that PA induced both cytotoxic and cytostatic effects on HUVECs, depending on the concentration used. Results also showed that PA suppressed VEGF-induced survival and proliferation of HUVECs. Furthermore, endothelial cell migration, invasion, and morphogenesis or tube formation demonstrated significant time- and dose-dependent inhibition by PA. PA also suppressed matrix metalloproteinase-2 (MMP-2) secretion and attenuated its activation to intermediate and active MMP-2. In addition, PA suppressed F-actin stress fiber formation to prevent migration of the endothelial cells. More importantly, anti-angiogenic potential of PA was also evidenced in two in vivo models. PA inhibited neo-vessels formation in murine Matrigel plugs, and angiogenesis in zebrafish embryos.Taken together, our study demonstrated the distinctive anti-angiogenic properties of PA, both in vitro and in vivo. This report thus reveals another biological activity of PA in addition to its reported anti-inflammatory and anti-cancer activities, suggestive of PA's potential for development as an anti-angiogenic agent for cancer therapy

    Treatment and Intervention for Opiate Dependence in the United Kingdom:Lessons from Triumph and Failure

    Get PDF
    The history of opiate treatment in the United Kingdom (UK) since the early 1980s is a rich source of learning about the benefits and pitfalls of drug treatment policy. We present five possible lessons to be learnt about how factors outside the clinic, including government, charities and researchers can influence treatment and outcomes. First, do not let a crisis go to waste. The philosophical shift from abstinence to harm reduction in the 1980s, in response to an HIV outbreak in injecting users, facilitated expansion in addiction services and made a harm reduction approach more acceptable. Second, studies of drug-related deaths can lead to advances in care. By elucidating the pattern of mortality, and designing interventions to address the causes, researchers have improved patient safety in certain contexts, though significant investment in Scotland has not arrested rising mortality. Third, collection of longitudinal data and its use to inform clinical guidelines, as pursued from the mid-1990s, can form an enduring evidence base and shape policy, sometimes in unintended ways. Fourth, beware of the presentation of harm reduction and recovery as in conflict. At the least, this reduces patient choice, and at worst, it has caused some services to be redesigned in a manner that jeopardises patient safety. Fifth, the relationship between the third and state sectors must be carefully nurtured. In the UK, early collaboration has been replaced by competition, driven by changes in funding, to the detriment of service provision

    Adaptive Copy Number Evolution in Malaria Parasites

    Get PDF
    Copy number polymorphism (CNP) is ubiquitous in eukaryotic genomes, but the degree to which this reflects the action of positive selection is poorly understood. The first gene in the Plasmodium folate biosynthesis pathway, GTP-cyclohydrolase I (gch1), shows extensive CNP. We provide compelling evidence that gch1 CNP is an adaptive consequence of selection by antifolate drugs, which target enzymes downstream in this pathway. (1) We compared gch1 CNP in parasites from Thailand (strong historical antifolate selection) with those from neighboring Laos (weak antifolate selection). Two percent of chromosomes had amplified copy number in Laos, while 72% carried multiple (2–11) copies in Thailand, and differentiation exceeded that observed at 73 synonymous SNPs. (2) We found five amplicon types containing one to greater than six genes and spanning 1 to >11 kb, consistent with parallel evolution and strong selection for this gene amplification. gch1 was the only gene occurring in all amplicons suggesting that this locus is the target of selection. (3) We observed reduced microsatellite variation and increased linkage disequilibrium (LD) in a 900-kb region flanking gch1 in parasites from Thailand, consistent with rapid recent spread of chromosomes carrying multiple copies of gch1. (4) We found that parasites bearing dhfr-164L, which causes high-level resistance to antifolate drugs, carry significantly (p = 0.00003) higher copy numbers of gch1 than parasites bearing 164I, indicating functional association between genes located on different chromosomes but linked in the same biochemical pathway. These results demonstrate that CNP at gch1 is adaptive and the associations with dhfr-164L strongly suggest a compensatory function. More generally, these data demonstrate how selection affects multiple enzymes in a single biochemical pathway, and suggest that investigation of structural variation may provide a fast-track to locating genes underlying adaptation

    A Comprehensive Map of Mobile Element Insertion Polymorphisms in Humans

    Get PDF
    As a consequence of the accumulation of insertion events over evolutionary time, mobile elements now comprise nearly half of the human genome. The Alu, L1, and SVA mobile element families are still duplicating, generating variation between individual genomes. Mobile element insertions (MEI) have been identified as causes for genetic diseases, including hemophilia, neurofibromatosis, and various cancers. Here we present a comprehensive map of 7,380 MEI polymorphisms from the 1000 Genomes Project whole-genome sequencing data of 185 samples in three major populations detected with two detection methods. This catalog enables us to systematically study mutation rates, population segregation, genomic distribution, and functional properties of MEI polymorphisms and to compare MEI to SNP variation from the same individuals. Population allele frequencies of MEI and SNPs are described, broadly, by the same neutral ancestral processes despite vastly different mutation mechanisms and rates, except in coding regions where MEI are virtually absent, presumably due to strong negative selection. A direct comparison of MEI and SNP diversity levels suggests a differential mobile element insertion rate among populations

    Man and the Last Great Wilderness: Human Impact on the Deep Sea

    Get PDF
    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC

    Estimating working memory capacity for lists of nonverbal sounds

    Get PDF
    Working memory (WM) capacity limit has been extensively studied in the domains of visual and verbal stimuli. Previous studies have suggested a fixed WM capacity of typically about 3 or 4 items, based on the number of items in working memory reaching a plateau after several items as the set size increases. However, the fixed WM capacity estimate appears to rely on categorical information in the stimulus set (Olsson & Poom, 2005). We designed a series of experiments to investigate nonverbal auditory WM capacity and its dependence on categorical information. Experiments 1 and 2 used simple tones and revealed capacity limit of up to 2 tones following a 6-s retention interval. Importantly, performance was significantly higher at set sizes 2, 3, and 4 when the frequency difference between target and test tones was relatively large. In Experiment 3, we added categorical information to the simple tones, and the effect of tone change magnitude decreased. Maximal capacity for each individual was just over 3 sounds, in the range of typical visual procedures. We propose that two types of information, categorical and detailed acoustic information, are kept in WM, and that categorical information is critical for high WM performance
    corecore