17 research outputs found

    Case report: Echocardiographic and computed tomographic features of congenital bronchoesophageal artery hypertrophy and fistula in a dog

    Get PDF
    IntroductionStudies on aberrant bronchoesophageal arteries are limited. Herein, we report a case of a multi-origin systemic-to-pulmonary shunt with suspected bronchoesophageal artery hypertrophy and fistula in a dog.Case reportA 4-year-old castrated male beagle weighing 11 kg underwent routine medical screening. Physical examination revealed a right-sided continuous murmur of grades 1–2. Thoracic radiography revealed a mild cardiomegaly. Echocardiography revealed a continuous turbulent shunt flow distal to the right pulmonary artery (RPA) branch from the right parasternal short axis pulmonary artery view. Computed tomography demonstrated systemic-to-pulmonary shunts originating from the descending aorta at the level of T7–8, the right 5th and 6th dorsal intercostal arteries, and the right brachiocephalic trunk, which formed anomalous networks around the trachea and esophagus that anastomosed into a large tortuous vessel at the level of T6–7 and entered the RPA. Surgical ligation of multiple shunting vessels was performed. Postoperative echocardiography and computed tomography showed decreased left ventricular volume overload and markedly decreased size of the varices. Additionally, most of the shunting vessels were without residual shunt flow.ConclusionThe present study provides information regarding imaging features and the successful surgical management of multiple systemic-to-pulmonary shunts originating from the descending aorta, right brachiocephalic trunk, and intercostal arteries and terminating at the RPA. Multimodal imaging features after surgical ligation have also been described

    Automated Subfield Volumetric Analysis of Amygdala, Hippocampus, and Thalamic Nuclei in Mesial Temporal Lobe Epilepsy

    Get PDF
    Purpose: Identifying relationships between clinical features and quantitative characteristics of the amygdala-hippocampal and thalamic subregions in mesial temporal lobe epilepsy (mTLE) may offer insights into pathophysiology and the basis for imaging prognostic markers of treatment outcome. Our aim was to ascertain different patterns of atrophy or hypertrophy in mesial temporal sclerosis (MTS) patients and their associations with postsurgical seizure outcomes. To assess this aim, this study is designed in 2 folds: (1) hemispheric changes within MTS group and (2) association with postsurgical seizure outcomes. Methods and materials: 27 mTLE subjects with mesial temporal sclerosis (MTS) were scanned for conventional 3D T1w MPRAGE images and T2w scans. With respect to 12 months post-surgical seizure outcomes, 15 subjects reported being seizure free (SF) and 12 reported continued seizures. Quantitative automated segmentation and cortical parcellation were performed using Freesurfer. Automatic labeling and volume estimation of hippocampal subfields, amygdala, and thalamic subnuclei were also performed. The volume ratio (VR) for each label was computed and compared between (1) between contralateral and ipsilateral MTS using Wilcoxon rank-sum test and (2) SF and not seizure free (NSF) groups using linear regression analysis. False Discovery rate (FDR) with significant level of 0.05 were used in both analyses to correct for multiple comparisons. Results: Amygdala: The medial nucleus of the amygdala was the most significantly reduced in patients with continued seizures when compared to patients who remained seizure free. Hippocampus: Comparison of ipsilateral and contralateral volumes with seizure outcomes showed volume loss was most evident in the mesial hippocampal regions such as CA4 and hippocampal fissure. Volume loss was also most explicit in the presubiculum body in patients with continued seizures at the time of their follow-up. Ipsilateral MTS compared to contralateral MTS analysis showed the heads of the ipsilateral subiculum, presubiculum, parasubiculum, dentate gyrus, CA4, and CA3 were more significantly affected than their respective bodies. Volume loss was most noted in mesial hippocampal regions. Thalamus: VPL and PuL were the most significantly reduced thalamic nuclei in NSF patients. In all statistically significant areas, volume reduction was observed in the NSF group. No significant volume reductions were noted in the thalamus and amygdala when comparing ipsilateral to contralateral sides in mTLE subjects. Conclusions: Varying degrees of volume loss were demonstrated in the hippocampus, thalamus, and amygdala subregions of MTS, especially between patients who remained seizure-free and those who did not. The results obtained can be used to further understand mTLE pathophysiology

    FDG-PET for evaluating the antitumor effect of intraarterial 3-bromopyruvate administration in a rabbit VX2 liver tumor model

    Get PDF
    OBJECTIVE: We wanted to investigate the feasibility of using FDG-PET for evaluating the antitumor effect of intraarterial administration of a hexokinase II inhibitor, 3-bromopyruvate (3-BrPA), in a rabbit VX2 liver tumor model. MATERIALS AND METHODS: VX2 carcinoma was grown in the livers of ten rabbits. Two weeks later, liver CT was performed to confirm appropriate tumor growth for the experiment. After tumor volume-matched grouping of the rabbits, transcatheter intraarterial administration of 3-BrPA was performed (1 mM and 5 mM in five animals each, respectively). FDG-PET scan was performed the day before, immediately after and a week after 3-BrPA administration. FDG uptake was semiquantified by measuring the standardized uptake value (SUV). A week after treatment, the experimental animals were sacrificed and the necrosis rates of the tumors were calculated based on the histopathology. RESULTS: The SUV of the VX2 tumors before treatment (3.87+/-1.51 [mean+/-SD]) was significantly higher than that of nontumorous liver parenchyma (1.72+/-0.34) (p < 0.0001, Mann-Whitney U test). The SUV was significantly decreased immediately after 3-BrPA administration (2.05+/-1.21) (p = 0.002, Wilcoxon signed rank test). On the one-week follow up PET scan, the FDG uptake remained significantly lower (SUV 1.41+/-0.73) than that before treatment (p = 0.002), although three out of ten animals showed a slightly increasing tendency for the FDG uptake. The tumor necrosis rate ranged from 50.00% to 99.90% (85.48%+/-15.87). There was no significant correlation between the SUV or the SUV decrease rate and the tumor necrosis rate in that range. CONCLUSION: Even though FDG-PET cannot exactly reflect the tumor necrosis rate, FDG-PET is a useful modality for the early assessment of the antitumor effect of intraarterial administration of 3-BrPA in VX2 liver tumor

    Amplitude Synchronization of Spontaneous Activity of Medial and Lateral Temporal Gyri Reveals Altered Thalamic Connectivity in Patients With Temporal Lobe Epilepsy

    Get PDF
    In this study, we examined whether amplitude synchronization of medial (MTL) and lateral (LTL) temporal lobes can detect unique alterations in patients with MTL epilepsy (mTLE) with mesial temporal sclerosis (MTS). This was a retrospective study of preoperative resting-state fMRI (rsfMRI) data from 31 patients with mTLE with MTS (age 23-69) and 16 controls (age 21-35). fMRI data were preprocessed based on a multistep preprocessing pipeline and registered to a standard space. Using each subject\u27s T1-weighted scan, the MTL and LTL were automatically segmented, manually revised and then fit to a standard space using a symmetric normalization registration algorithm. Dual regression analysis was applied on preprocessed rsfMRI data to detect amplitude synchronization of medial and lateral temporal segments with the rest of the brain. We calculated the overlapped volume ratio of synchronized voxels within specific target regions including the thalamus (total and bilateral). A general linear model was used with Bonferroni correction for covariates of epilepsy duration and age of patient at scan to statistically compare synchronization in patients with mTLE with MTS and controls, as well as with respect to whether patients remained seizure-free (SF) or not (NSF) after receiving epilepsy surgery. We found increased ipsilateral positive connectivity between the LTLs and the thalamus and contralateral negative connectivity between the MTLs and the thalamus in patients with mTLE with MTS compared to controls. We also found increased asymmetry of functional connectivity between temporal lobe subregions and the thalamus in patients with mTLE with MTS, with increased positive connectivity between the LTL and the lesional-side thalamus as well as increased negative connectivity between the MTL and the nonlesional-side thalamus. This asymmetry was also seen in NSF patients but was not seen in SF patients and controls. Amplitude synchronization was an effective method to detect functional connectivity alterations in patients with mTLE with MTS. Patients with mTLE with MTS overall showed increased temporal-thalamic connectivity. There was increased functional involvement of the thalamus in MTS, underscoring its role in seizure spread. Increased functional thalamic asymmetry patterns in NSF patients may have a potential role in prognosticating patient response to surgery. Elucidating regions with altered functional connectivity to temporal regions can improve understanding of the involvement of different regions in the disease to potentially target for intervention or use for prognosis for surgery. Future studies are needed to examine the effectiveness of using patient-specific abnormalities in patterns to predict surgical outcome

    Machine Learning-Based Classification of Chronic Traumatic Brain Injury Using Hybrid Diffusion Imaging

    Get PDF
    BACKGROUND AND PURPOSE: Traumatic brain injury (TBI) can cause progressive neuropathology that leads to chronic impairments, creating a need for biomarkers to detect and monitor this condition to improve outcomes. This study aimed to analyze the ability of data-driven analysis of diffusion tensor imaging (DTI) and neurite orientation dispersion imaging (NODDI) to develop biomarkers to infer symptom severity and determine whether they outperform conventional T1-weighted imaging. MATERIALS AND METHODS: A machine learning-based model was developed using a dataset of hybrid diffusion imaging of patients with chronic traumatic brain injury. We first extracted the useful features from the hybrid diffusion imaging (HYDI) data and then used supervised learning algorithms to classify the outcome of TBI. We developed three models based on DTI, NODDI, and T1-weighted imaging, and we compared the accuracy results across different models. RESULTS: Compared with the conventional T1-weighted imaging-based classification with an accuracy of 51.7-56.8%, our machine learning-based models achieved significantly better results with DTI-based models at 58.7-73.0% accuracy and NODDI with an accuracy of 64.0-72.3%. CONCLUSION: The machine learning-based feature selection and classification algorithm based on hybrid diffusion features significantly outperform conventional T1-weighted imaging. The results suggest that advanced algorithms can be developed for inferring symptoms of chronic brain injury using feature selection and diffusion-weighted imaging

    Effect of Electron Beam Irradiation and Storage on the Quality Attributes of Sausages with Different Fat Contents

    No full text
    The 2-thiobarbituric acid reactive substances (TBARS) value of sausages was not affected by fat content, but increased after irradiation (5 kGy). Storage for 60 days increased the TBARS of nonirradiated sausages (P < 0.05), but had no effect on irradiated ones. The numbers of volatile compounds and the amounts of total volatiles increased by irradiation in both high-fat (29% fat) and low-fat (16% fat) sausages. Dimethyl sulfide was detected only in irradiated sausages regardless of fat content (P < 0.05), but disappeared after 60 days of storage. Pentane and 1-heptene were detected only in irradiated samples after 60 days of storage. Low-fat sausages had higher L*-value, but had lower a*- and b*-values than high fat sausages. Irradiation and storage had little effects on both the exterior and interior color (L*-, a*-, and b*-values) of sausages. Fat content had no effect on the sensory parameters of sausages regardless irradiation and storage. However, irradiated sausages had significantly stronger off-odor and off-taste than nonirradiated ones regardless of fat contents (P < 0.05). This indicated that fat content in sausages had minimal effects on the quality of irradiated sausages during storage.</p

    Single-Phase Heat Transfer Characteristics of Water in an Industrial Plate and Shell Heat Exchanger under High-Temperature Conditions

    No full text
    This study investigates the single-phase heat transfer, pressure drop, and temperature distribution of water in an industrial plate and shell heat exchanger (PSHE) under high-temperature conditions. In this experiment, the hot fluid flows downward on the plate side, while the cold fluid flows upward on the shell side. In the single-phase heat transfer experiment on water, the Nu is in the range of 7.85–15.2 with a Re from 1200 to 3200, which is substantially lower than that on the plate heat exchanger (PHE) studied previously. The decrease in the Nu is attributed to the reduced cross-sectional heat transfer area from the flow imbalance in the PSHE. As the Re increases, the pressure drop on the plate side increases more rapidly than that on the shell side because of the difference in the port pressure drop, flow direction, and flow position on the plate. When the Re is 2620, the pressure drops on the plate and shell sides are 52.5 kPa and 25.5 kPa, respectively, a difference of 51.4%. The temperature deviation on the circular plate increases as the Re decreases, especially between the edge and bottom of the plate because of uneven flow distribution on the plate
    corecore