607 research outputs found

    Rotor design optimization using a free wake analysis

    Get PDF
    The aim of this effort was to develop a comprehensive performance optimization capability for tiltrotor and helicopter blades. The analysis incorporates the validated EHPIC (Evaluation of Hover Performance using Influence Coefficients) model of helicopter rotor aerodynamics within a general linear/quadratic programming algorithm that allows optimization using a variety of objective functions involving the performance. The resulting computer code, EHPIC/HERO (HElicopter Rotor Optimization), improves upon several features of the previous EHPIC performance model and allows optimization utilizing a wide spectrum of design variables, including twist, chord, anhedral, and sweep. The new analysis supports optimization of a variety of objective functions, including weighted measures of rotor thrust, power, and propulsive efficiency. The fundamental strength of the approach is that an efficient search for improved versions of the baseline design can be carried out while retaining the demonstrated accuracy inherent in the EHPIC free wake/vortex lattice performance analysis. Sample problems are described that demonstrate the success of this approach for several representative rotor configurations in hover and axial flight. Features that were introduced to convert earlier demonstration versions of this analysis into a generally applicable tool for researchers and designers is also discussed

    Computation of rotor aerodynamic loads in forward flight using a full-span free wake analysis

    Get PDF
    The development of an advanced computational analysis of unsteady aerodynamic loads on isolated helicopter rotors in forward flight is described. The primary technical focus of the development was the implementation of a freely distorting filamentary wake model composed of curved vortex elements laid out along contours of constant vortex sheet strength in the wake. This model captures the wake generated by the full span of each rotor blade and makes possible a unified treatment of the shed and trailed vorticity in the wake. This wake model was coupled to a modal analysis of the rotor blade dynamics and a vortex lattice treatment of the aerodynamic loads to produce a comprehensive model for rotor performance and air loads in forward flight dubbed RotorCRAFT (Computation of Rotor Aerodynamics in Forward Flight). The technical background on the major components of this analysis are discussed and the correlation of predictions of performance, trim, and unsteady air loads with experimental data from several representative rotor configurations is examined. The primary conclusions of this study are that the RotorCRAFT analysis correlates well with measured loads on a variety of configurations and that application of the full span free wake model is required to capture several important features of the vibratory loading on rotor blades in forward flight

    Strategi Pengembangan Usaha Gerabah dalam Meningkatkan Perekonomian dan Kesejahteraan Pengrajin Maregam

    Get PDF
    Tujuan penelitian ini untuk mengetahui kondisi, strategi pengembagan dan dampak ekonomi usaha gerabah Desa Maregam Kota Tidore. 50 sampel usaha gerabah, metode Analisis Kuntitatif deskripsi.Hasil penelitian ini adalah kondisi usaha gerabah memiliki kekuatan yang lebih besar dibandingkan dengan kelemahan, dari segi eksternal peluang juga lebih besar dari ancaman, hal ini dapat dimanfaatkan oleh para pengrajin untuk terus mengembangkan usaha mereka. Pengembangan diperlukan untuk meminimalisir kelemahan yang dimiliki oleh usaha gerabah, karena masih banyak terdapat kelemahan yang perlu di perbaiki, seperti kualitas produk, varian produk yang masih sedikit, alat produksi yang tradisional, serta SDM yang masih kurang baik, strategi yang dapat dilakukan adalah strategi agresife dan keberadaan usaha gerabah dapat memberikan sumber pendapatan yang menjanjikan bagi masyarakat desa Maregam

    Phase diagram of the ferroelectric-relaxor (1-x)PbMg(1/3)Nb(2/3)O3-xPbTiO3

    Get PDF
    Synchrotron x-ray powder diffraction measurements have been performed on unpoled ceramic samples of (1-x)PbMg(1/3)Nb(2/3)O3-xPbTiO3 (PMN-xPT) with 30%<= x<= 39% as a function of temperature around the morphotropic phase boundary (MPB), which is the line separating the rhombohedral and tetragonal phases in the phase diagram. The experiments have revealed very interesting features previously unknown in this or related systems. The sharp and well-defined diffraction profiles observed at high and intermediate temperatures in the cubic and tetragonal phases, respectively, are in contrast to the broad features encountered at low temperatures. These peculiar characteristics, which are associated with the monoclinic phase of MC-type previously reported by Kiat et al and Singh et al., can only be interpreted as multiple coexisting structures with MC as the major component. An analysis of the diffraction profiles has allowed us to properly characterize the PMN-xPT phase diagram and to determine the stability region of the monoclinic phase, which extends from x= 31% to x= 37% at 20 K. The complex lansdcape of observed phases points to an energy balance between the different PMN-xPT phases which is intrinsically much more delicate than that of related systems such as PbZr(1-x)TixO3 or (1-x)PbZn(1/3)Nb(1/3)O3-xPbTiO3. These observations are in good accord with an optical study of x= 33% by Xu et al., who observed monoclinic domains with several different polar directions coexisting with rhombohedral domains, in the same single crystal.Comment: REVTeX4, 11 pages, 10 figures embedde

    Transition Matrix Monte Carlo Reweighting and Dynamics

    Full text link
    We study an induced dynamics in the space of energy of single-spin-flip Monte Carlo algorithm. The method gives an efficient reweighting technique. This dynamics is shown to have relaxation times proportional to the specific heat. Thus, it is plausible for a logarithmic factor in the correlation time of the standard 2D Ising local dynamics.Comment: RevTeX, 5 pages, 3 figure

    Evidence for MBM_B and MCM_C phases in the morphotropic phase boundary region of (1x)[Pb(Mg1/3Nb2/3)O3]xPbTiO3(1-x)[Pb(Mg_{1/3}Nb_{2/3})O_3]-xPbTiO_3 : A Rietveld study

    Full text link
    We present here the results of the room temperature dielectric constant measurements and Rietveld analysis of the powder x-ray diffraction data on (1x)[Pb(Mg1/3Nb2/3)O3]xPbTiO3(1-x)[Pb(Mg_{1/3}Nb_{2/3})O_3]-xPbTiO_3(PMN-xxPT) in the composition range 0.20x0.450.20 \leq x \leq 0.45 to show that the morphotropic phase boundary (MPB) region contains two monoclinic phases with space groups Cm (or MBM_B type) and Pm (or MCM_C type) stable in the composition ranges 0.27x0.300.27 \leq x \leq 0.30 and 0.31x0.340.31 \leq x \leq 0.34, respectively. The structure of PMN-xxPT in the composition ranges 0x0 \leq x \leq 0.26, and 0.35x10.35 \leq x \leq1 is found to be rhombohedral (R3m) and tetragonal (P4mm), respectively. These results are compared with the predictions of Vanderbilt & Cohen's theory.Comment: 20 pages, 11 pdf figure

    FPGA technology in process tomography

    Get PDF
    The aims of this paper are to provide a review of the process tomography applications employing field programmable gate arrays (FPGA) and to understand current FPGA related researches, in order to seek for the possibility to applied FPGA technology in an ultrasonic process tomography system. FPGA allows users to implement complete systems on a programmable chip, meanwhile, five main benefits of applying the FPGA technology are performance, time to market, cost, reliability, and long-term maintenance. These advantages definitely could help in the revolution of process tomography, especially for ultrasonic process tomography and electrical process tomography. Future work is focused on the ultrasonic process tomography for chemical process column investigation using FPGA for the aspects of low cost, high speed and reconstructed image quality
    corecore