782 research outputs found

    Large-Scale MIMO versus Network MIMO for Multicell Interference Mitigation

    Full text link
    This paper compares two important downlink multicell interference mitigation techniques, namely, large-scale (LS) multiple-input multiple-output (MIMO) and network MIMO. We consider a cooperative wireless cellular system operating in time-division duplex (TDD) mode, wherein each cooperating cluster includes BB base-stations (BSs), each equipped with multiple antennas and scheduling KK single-antenna users. In an LS-MIMO system, each BS employs BMBM antennas not only to serve its scheduled users, but also to null out interference caused to the other users within the cooperating cluster using zero-forcing (ZF) beamforming. In a network MIMO system, each BS is equipped with only MM antennas, but interference cancellation is realized by data and channel state information exchange over the backhaul links and joint downlink transmission using ZF beamforming. Both systems are able to completely eliminate intra-cluster interference and to provide the same number of spatial degrees of freedom per user. Assuming the uplink-downlink channel reciprocity provided by TDD, both systems are subject to identical channel acquisition overhead during the uplink pilot transmission stage. Further, the available sum power at each cluster is fixed and assumed to be equally distributed across the downlink beams in both systems. Building upon the channel distribution functions and using tools from stochastic ordering, this paper shows, however, that from a performance point of view, users experience better quality of service, averaged over small-scale fading, under an LS-MIMO system than a network MIMO system. Numerical simulations for a multicell network reveal that this conclusion also holds true with regularized ZF beamforming scheme. Hence, given the likely lower cost of adding excess number of antennas at each BS, LS-MIMO could be the preferred route toward interference mitigation in cellular networks.Comment: 13 pages, 7 figures; IEEE Journal of Selected Topics in Signal Processing, Special Issue on Signal Processing for Large-Scale MIMO Communication

    Optimization of piezoresistive cantilevers for static and dynamic sensing applications

    Get PDF
    The presented work aims to optimize the performance of piezoresistive cantilevers in cases where the output signal originates either from a static deflection of the cantilever or from the dynamic (resonance) characteristic of the beam. Based on a new stress concentration technique, which utilizes silicon beams and wires embedded in the cantilever, the force sensitivity of the cantilever is increased up to 8 fold with only about a 15% decrease in the cantilever stiffness. Moreover, the developed stress-concentrating cantilevers show almost the same resonance characteristic as conventional cantilevers. The focus of the second part of the present work is to provide guidelines for designing rectangular silicon cantilever beams to achieve maximum quality factors for the fundamental and higher flexural resonance at atmospheric pressure. The applied methodology is based on experimental data acquisition of resonance characteristics of silicon cantilevers, combined with modification of analytical damping models to match the measurement data. To this end, rectangular silicon cantilever beams with thicknesses of 5, 7, 8, 11 and 17 um and lengths and widths ranging from 70 to 1050 um and 80 to 230 um, respectively, have been fabricated and tested. To better describe the experimental data, modified models for air damping have been developed. Moreover, to better understand the damping mechanisms in a resonant cantilever system, analytical models have been developed to describe the cantilever effective mass in any flexural resonance mode. To be able to extract reliable Q-factor data for low signal-to-noise ratios, a new iterative curve fitting technique is developed and implemented. To address the challenge of frequency drift in (mass-sensitive) resonant sensors, and especially cantilever-based devices, the last part of the research deals with a novel compensation technique to cancel the unwanted environmental effects (e.g., temperature and humidity). This technique is based on exploring the resonance frequency difference of two flexural modes. Experimental data show improvements in temperature and humidity coefficients of frequency from -19.5 to 0.2 ppm/ËšC and from 0.7 to -0.03 ppm/%RH, respectively. The last part of the work also aims on techniques to enhance or suppress the flexural vibration amplitude in desired overtones.Ph.D.Committee Chair: Brand, Oliver; Committee Member: Adibi, Ali; Committee Member: Allen, Mark G.; Committee Member: Bottomley, Lawrence A.; Committee Member: Degertekin, F. Leven

    Identifying and ranking key performance indicators in football clubs

    Get PDF
    Key performance indicators are actually measurable variables based on which we can measure the success rate of an organization in reaching defined key goals. In order to create key performance indicators, steps, and standards must be passed, each of which is of great importance. Based on how the key performance indicator (KPI) is defined and determined, it is possible to measure the performance of a person, department, process, campaign, or strategic goals of a brand. In fact, KPIs can be considered for different industries and for different levels of each business. Considering the importance of football clubs and their high social impact, the purpose of this research is to investigate these key performance indicators in order to grow and improve their comprehensive performance. In order to extract data, a literature review was used. Data refinement and prioritization were done using the fuzzy decision-making method, and the opinions of active experts in clubs and football players were used. The results show that indicators based on infrastructure development are among the most important indicators and should be given special attention

    Discrete action control for prosthetic digits

    Get PDF
    We aim to develop a paradigm for simultaneous and independent control of multiple degrees of freedom (DOFs) for upper-limb prostheses. To that end, we introduce action control, a novel method to operate prosthetic digits with surface electromyography (EMG) based on multi-output, multi-class classification. At each time step, the decoder classifies movement intent for each controllable DOF into one of three categories: open, close, or stall (i.e., no movement). We implemented a real-time myoelectric control system using this method and evaluated it by running experiments with one unilateral and two bilateral amputees. Participants controlled a six-DOF bar interface on a computer display, with each DOF corresponding to a motor function available in multi-articulated prostheses. We show that action control can significantly and systematically outperform the state-of-the-art method of position control via multi-output regression in both task- and non-task-related measures. Using the action control paradigm, improvements in median task performance over regression-based control ranged from 20.14% to 62.32% for individual participants. Analysis of a post-experimental survey revealed that all participants rated action higher than position control in a series of qualitative questions and expressed an overall preference for the former. Action control has the potential to improve the dexterity of upper-limb prostheses. In comparison with regression-based systems, it only requires discrete instead of real-valued ground truth labels, typically collected with motion tracking systems. This feature makes the system both practical in a clinical setting and also suitable for bilateral amputation. This work is the first demonstration of myoelectric digit control in bilateral upper-limb amputees. Further investigation and pre-clinical evaluation are required to assess the translational potential of the method

    Microwave Heating Applications in Mineral Processing

    Get PDF
    • …
    corecore